Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter August 23, 2012

Genetic characterization of four wild species of Chinese marmots using microsatellite markers

  • Yulong Chen EMAIL logo , Zhongdong Wang , Guangwei Zhang , Wei Fan , Yuanqing Tao , Xue He , Sihai Zhao , Bingqiao Huang , Jianglin Fan , Kitajima Shuji and Enqi Liu
From the journal Biologia

Abstract

Marmots are large ground squirrels, and 14 species have been reported in the world, including four species of marmots (Himalayan marmot, Tarbagan marmot, gray marmot and long-tailed marmot) living in China. Although these biological resources are abundant in China, information regarding their genetic features is lacking, hampering further study regarding them. The aims of this research were to evaluate genetic variations of four species of Chinese wild marmots, and analyzed kinship of these marmot populations. In the current study, we collected samples of four species of Chinese wild marmot and analyzed the effective allele number, gene diversity, the Shannon index, and polymorphism information to evaluate genetic variations using 13 microsatellite loci. Based on Nei’s genetic distance using the unweighted pair group method, we constructed a dendrogram to analyze the population kinship. We determined that all four Chinese marmot species had high genetic polymorphisms and departure from Hardy-Weinberg equilibrium. The Chinese marmots to be divided into two large groups: Himalayan marmot was independent group. Tarbagan marmot, gray marmot and long-tailed marmot were others; Tarbagan marmot and gray marmot showed a close kinship with each other, but long-tailed marmot did not have a close relationship with the other species. The high polymorphisms and the kinship of Chinese marmot populations were correlated with geographical terrain of their habitat. Himalayan marmot was characterized as living in unique alpine meadows in Qinghai-Tibet plateau and was affected by terrain; however, Tarbagan marmot, gray marmot and long-tailed marmot were characterized as living in grassland or alpine grassland and were not affected by terrain. Genetic features of Chinese wild marmots were investigated in this study. This may give using information regarding protection of Chinese wild marmot resource and further application of biomedical research.

[1] Botstein D., White R.L., Skolnick M. & Davis R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3): 314–331. PMID: 6247908 Search in Google Scholar

[2] Brandler O.V., Nikolsky A.A. & Kolesnikov V.V. 2010. Spatial distribution of Marmota baibacin and M. sibirica (Marmota, Sciuridae, Rodentia) in a zone of sympatry in Mongolian Altai: Bioacoustic analysis. Izv. Akad. Nauk. Ser. Biol. 3: 380–384. PMID: 20583623 10.1134/S1062359010030155Search in Google Scholar

[3] Brant J.B., Gustavo C.A. & Peter M.G. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196(1): 80–83. DOI: 10.1016/0003-2697(91)90120-I http://dx.doi.org/10.1016/0003-2697(91)90120-I10.1016/0003-2697(91)90120-ISearch in Google Scholar

[4] Caridini A., Hoffmann R.S. & Thorington R.W. 2005. Morphological evolution in marmot (Rodentia, Sciuridae): size and shape of the dorsal and lateral surfaces of the cranium. J. Zool. Sys. Evol. Res. 43: 258–268. DOI: 10.1111/j.1439-0469.2005.00316.258-268 http://dx.doi.org/10.1111/j.1439-0469.2005.00316.xSearch in Google Scholar

[5] Edwards A., Civitello H., Hammond H.A. & Caskey C.T. 1991. DNA typing and genetic mapping will a trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49(4): 746–756. PMID: 1683171 Search in Google Scholar

[6] Fan W. 2007. Effect of ketamine hydrochloride on braking anesthesia of Himalayan marmot. Chin. J. Zoonoses 23(4): 418. Search in Google Scholar

[7] Goossens B., Chikhi C., Taberlet P., Waits L.D. & Allaine D. 2001. Microsatellite analysis of genetic variation among and within Alpine marmot populations in the French Alps. Mol. Ecol. 10(1): 41–52. DOI: 10.1046/j.1365-294X.2001.01192.x http://dx.doi.org/10.1046/j.1365-294X.2001.01192.x10.1046/j.1365-294X.2001.01192.xSearch in Google Scholar

[8] Hanslik S. & Kruckenhauser L. 2000. Microsatellite loci for two European sciurid species (Marmota marmota, Spermophilus citellus). Mol. Ecol. Notes 9(12): 2163–2168. DOI: 10.1046/j.1365-294X.2000.10535.x 10.1046/j.1365-294X.2000.10535.xSearch in Google Scholar

[9] Heame C.M., Ghosh S.T. & Yodd J.A. 1992. Microsatellite for linkage analysis of genetic traits. Trends Genet. 8(8): 288–294. DOI: 10.1016/0168-9525(92)90256-4 http://dx.doi.org/10.1016/0168-9525(92)90256-410.1016/0168-9525(92)90256-4Search in Google Scholar

[10] Huang X.L. 1996. Study of Marmota himalayana as laboratory animal. Chin. J. Lab. Anim. Sci. 6: 70–72. Search in Google Scholar

[11] Kyle C.J., Karels T.J., Clark B., Strobeck C., Hik D.S. & Davis C.S. 2004. Isolation and characterization of microsatellites markers in hoary marmots (Martmota caligata). Mol. Ecol. Notes. 4(4): 749–751. DOI: 10.1111/j.1471-8286.2004.00810.x http://dx.doi.org/10.1111/j.1471-8286.2004.00810.x10.1111/j.1471-8286.2004.00810.xSearch in Google Scholar

[12] Li Y., Wang Z., Tao Y., Fan W., Li M., Huang B., Zhao S., Fan J. & Liu E. 2012. Characteristics of Himalayan marmots and their response to an atherogenic diet. Exp. Anim. 61(4): 461–466. http://dx.doi.org/10.1538/expanim.61.46110.1538/expanim.61.461Search in Google Scholar PubMed

[13] Litt M. & Luty J.A. 1989. A hypervariable microsatellite revealed by in vitro amplication of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44: 397–401. Search in Google Scholar

[14] Menne S. & Cote P.J. 2007. The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J. Gastroenterol. 13(1): 104–124. PMID: 17206759 10.3748/wjg.v13.i1.104Search in Google Scholar PubMed PubMed Central

[15] Nei M. 1972. Genetic distance between populations. Am Nat. 106(949): 283–292. http://dx.doi.org/10.1086/28277110.1086/282771Search in Google Scholar

[16] Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3): 583–590. PMID: 17248844 10.1093/genetics/89.3.583Search in Google Scholar PubMed PubMed Central

[17] Peiffer A.K., Florant G.L. & Summers S.A. 2004. Seasonal changes in Akt/PKB phosphorylation and fat cell size inMarmots. FASEB J. 18(4, Suppl. S): A314–A314. Search in Google Scholar

[18] Silva A.D., Luikart G., Allaine D., Gautier P., Taberlet P. & Pompanon F. 2003. Isolation and characterization of microsatellites in European alpine marmots (Marmota marmota). Mol. Ecol. Notes. 3(2): 189–190. DOI: 10.1046/j.1471-8286.2003.00392.x http://dx.doi.org/10.1046/j.1471-8286.2003.00392.x10.1046/j.1471-8286.2003.00392.xSearch in Google Scholar

[19] Tautz, D; Schlötterer C. 1994. SSimple sequences. Curr. Opin. Genet. Dev. 4(6): 832–839. DOI: 10.1016/0959-437X(94)90067-1 http://dx.doi.org/10.1016/0959-437X(94)90067-110.1016/0959-437X(94)90067-1Search in Google Scholar

[20] Thorington R.W. Jr. & Hoffman R.S. 2005. Family Sciuridae, pp. 754–818. In: Wilson D.E. & Reeder D.M. (eds), Mammal Species of the World. A Taxonomic and Geographic Reference, Johns Hopkins University Press, Baltimore, 2000 pp. ISBN: 0801882214, 978-0801882210 Search in Google Scholar

[21] Wang Z., Weber J.L., Zhong G. & Tanksley S.D. 1994. Survey of plant short tandem DNA repeats. Theor. Appl. Genet. 88(1): 1–6. http://dx.doi.org/10.1007/BF0022238610.1007/BF00222386Search in Google Scholar PubMed

[22] Xu J.H., Wang L.L., Xue H.L., Wang Y.S. & Xu L.X. 2009. Genetic structure of Himalayan marmot (Marmota himalayana) population alongside the Qinghai-Tibet Railway. Acta Ecol. Sin. 29(5): 314–319. DOI: 10.1016/j.chnaes.2009.09.010 http://dx.doi.org/10.1016/j.chnaes.2009.09.01010.1016/j.chnaes.2009.09.010Search in Google Scholar

[23] Yuan C.Z., Wang J.M., Ma Y.H., Qu X.X., Shang Y.G. & Zhang N.B. 2006. Genetic diversity of indigenous sheep breeds in Shandong province based on microsatellite markers study. Chin. J. Appl. Ecol. 17(8): 1459–1464. Search in Google Scholar

Published Online: 2012-8-23
Published in Print: 2012-10-1

© 2012 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-012-0088-8/html
Scroll to top button