
CDMTCS
Research
Report
Series

Evaluating the Complexity of
Mathematical Problems.
Part 2

Cristian S. Calude1,
Elena Calude2

1University of Auckland, NZ
2Massey University at Albany, NZ

CDMTCS-369
August 2009

Centre for Discrete Mathematics and
Theoretical Computer Science

Evaluating the Complexity of Mathematical
Problems. Part 2∗

Cristian S. Calude1, Elena Calude2

1University of Auckland, New Zealand
www.cs.auckland.ac.nz/~cristian

2Massey University at Albany, New Zealand
http://www.massey.ac.nz/~ecalude

December 31, 2009

Abstract

In this paper we present an implementation of the computational method in [5]
allowing to rank in complexity mathematical statements. We introduce the com-
plexity classes (CU,i)i≥1, and, accordingly, we show that the Legendre’s conjecture,
Fermat’s last theorem and Goldbach’s conjecture are in CU,1, Dyson’s conjecture is
in CU,2, the Riemann hypothesis is in CU,3, and the four colour theorem is in CU,4.

1 Introduction

Based on the possibility of expressing mathematical problem in terms of (very) simple
programs reducible to the halting problem we developed in [7, 5] a uniform approach
for evaluating the complexity of a large class of mathematical problems. In this paper
we: a) describe an implementation of the method, b) introduce the complexity classes
(CU,i)i≥1, and c) rank according to b) the following six mathematical statements: Gold-
bach’s conjecture, Legendre’s conjecture, Fermat’s last theorem, Dyson’s conjecture, the
four colour theorem, and the Riemann hypothesis. To this aim we first describe a uni-
versal programming language (a prefix-free Turing machine) and a uniform method for
evaluating the size (measured in bits) of the programs written in the language. For each
of the above statements we write the shortest possible program which systematically
searches for a counter-example; the program never stops if and only if the statement is
true. The ranking of a statement in a class CU,i is based on the size of its associated
program, as described above.

∗This work was supported in part by The Andrea von Braun Foundation, Munich, under the grant
for “Artistic Forms and Complexity”.

The programs for Goldbach’s conjecture and the Riemann hypothesis improve (in
size) those in [7] and appear in [9]. The program for the four colour theorem is in [6].
The other programs appear here for the first time.

The paper is structured as follows. In the next section we introduce a universal
programming language. In section 3 we present the implementation of the method in-
troduced in [7, 5] and the complexity classes (CU,i)i≥1. In section 4 we present the
algorithms for some routines frequently used in programs. In sections 5–7 we discuss
Legendre’s conjecture, Fermat’s last theorem, Dyson’s conjecture, Goldbach’s conjec-
ture, the four colour theorem, and the Riemann hypothesis, and section 8 presents some
conclusions.

2 A universal programming language

We briefly describe the syntax and the semantics of a register machine language which
implements a (natural) universal prefix-free binary Turing machine U ; it is a refinement
of the languages described in [10, 8, 7].

Any register program (machine) uses a finite number of registers, each of which may
contain an arbitrarily large non-negative integer.

By default, all registers, named with a string of lower or upper case letters, are
initialised to 0. Instructions are labeled by default with 0,1,2,. . .

The register machine instructions are listed below. Note that in all cases R2 and R3
denote either a register or a non-negative integer, while R1 must be a register. When
referring to R we use, depending upon the context, either the name of register R or the
non-negative integer stored in R.

=R1,R2,R3

If the contents of R1 and R2 are equal, then the execution continues at the R3-th
instruction of the program. If the contents of R1 and R2 are not equal, then execution
continues with the next instruction in sequence. If the content of R3 is outside the scope
of the program, then we have an illegal branch error.

&R1,R2

The contents of register R1 is replaced by R2.

+R1,R2

The contents of register R1 is replaced by the sum of the contents of R1 and R2.

!R1

One bit is read into the register R1, so the contents of R1 becomes either 0 or 1. Any
attempt to read past the last data-bit results in a run-time error.

2

%

This is the last instruction for each register machine program before the input data. It
halts the execution in two possible states: either successfully halts or it halts with an
under-read error.

A register machine program consists of a finite list of labeled instructions from the
above list, with the restriction that the halt instruction appears only once, as the last
instruction of the list. The input data (a binary string) follows immediately after the
halt instruction. A program not reading the whole data or attempting to read past the
last data-bit results in a run-time error. Some programs (as the ones presented in this
paper) have no input data; these programs cannot halt with an under-read error.

The instruction =R,R,n is used for the unconditional jump to the n-th instruction of
the program. For Boolean data types we use integers 0 = false and 1 = true.

For longer programs it is convenient to distinguish between the main program and
some sets of instructions called “routines” which perform specific tasks for another rou-
tine or the main program. The call and call-back of a routine are executed with uncon-
ditional jumps.

3 Complexity

We present a method of evaluating the complexity of a Π1–problem π, i.e. a statement
of the form π = ∀σP (σ), where P is a computable predicate. To every Π1–problem
π = ∀σP (σ) we associate the program ΠP = inf{n : P (n) = false} searches for a
possible counter-example to π. The following equivalence holds true: π is true iff U(ΠP)
never halts.

The complexity (with respect to U) of a Π1–problem π is defined by

CU(π) = inf{|ΠP | : π = ∀nP (n)}.

The choice of U is not important because if U,U � are universal, then there exists a
constant c = cU,U � such that for every Π1–problem π, |CU(π) − CU �(π)| ≤ c. The “bad
news” is that the complexity CU is not computable [3].

At the first glance the complexity CU may appear to separate the set of Π1–problems
in two classes only: this is false as CU is unbounded. Because of incomputability we
can work only with upper bounds of CU . As the exact value of CU is not important, we
classify Π1–problems into the following classes:

CU,n = {π : π is a Π1–problem, CU(π) ≤ n kbit1}.

It is seen that for every n ≥ 1 there is an m > n such that CU,n is strictly included
in CU,m; we don’t know whether m can always be taken to be n + 1, i.e. we have a strict
hierarchy.

1A kilobit (kbit or kb) is equal to 210 bits.

3

The goal is to compute an upper bound of the complexity CU(π) by choosing a
representation π = ∀nP (n) for which |ΠP | is the smallest possible, hence |ΠP | is the
best possible upper bound for CU(π). The running time efficiency of the program ΠP is
irrelevant here, the size in bits counts. (See more details and comments in [5].)

To compute an upper bound on CU(π) we need to compute the size in bits of the
program ΠP , so we need to uniquely code in binary the programs for U . To this aim we
use the following prefix-free coding.

The binary coding of special characters (instructions and comma) is the following (ε
is the empty string):

special characters code instruction code
, ε + 111
& 01 ! 110
= 00 % 100

Table 1

For registers we use the prefix-free code code1 = {0|x|1x | x ∈ {0, 1}∗}. Here are the
codes of the first 32 registers:2

register code1 register code1 register code1 register code1

R1 010 R9 0001010 R17 000010010 R25 000011010
R2 011 R10 0001011 R18 000010011 R26 000011011
R3 00100 R11 0001100 R19 000010100 R27 000011100
R4 00101 R12 0001101 R20 000010101 R28 000011101
R5 00110 R13 0001110 R21 000010110 R29 000011110
R6 00111 R14 0001111 R22 000010111 R30 000011111
R7 0001000 R15 000010000 R23 000011000 R31 00000100000
R8 0001001 R16 000010001 R24 000011001 R32 00000100001

Table 2

For non-negative integers we use the prefix-free code code2 = {1|x|0x | x ∈ {0, 1}∗}.
Here are the codes of the first 16 non-negative integers:

integer code2 integer code2 integer code2 integer code2

0 100 4 11010 8 1110010 12 1110110
1 101 5 11011 9 1110011 13 1110111
2 11000 6 1110000 10 1110100 14 111100000
3 11001 7 1110001 11 1110101 15 111100001

Table 3
2The register names are chosen to optimise the length of the program, i.e. the most frequent registers

have the smallest code1 length.

4

The instructions are coded by self-delimiting binary strings as follows:

1. &R1,R2 is coded in two different ways depending on R2:3

01code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is an integer.

2. +R1,R2 is coded in two different ways depending on R2:

111code1(R1)codei(R2),

where i = 1 if R2 is a register and i = 2 if R2 is a non-negative integer.

3. =R1,R2,R3 is coded in four different ways depending on the data types of R2 and
R3:

00code1(R1)codei(R2)codej(R3),

where i = 1 if R2 is a register and i = 2 if R2 is a non-negative integer, j = 1 if
R3 is a register and j = 2 if R3 is a non-negative integer.

4. !R1 is coded by
110code1(R1).

5. % is coded by
100.

All codings for instruction names and special symbol comma, registers and non-
negative integers are self-delimiting; the prefix-free codes used for registers and non-
negative integers are disjoint. The code of any instruction is the concatenation of the
codes of the instruction name and the codes (in order) of its components, hence the set
of codes of instructions is prefix-free. The code of a program is the concatenation of the
codes of its instructions, so the set of codes of all programs is prefix-free too.

Here are some examples of instructions:

instruction code length
% 100 3
& R1, 0 01 010 100 8
& R1, R2 01 010 011 8
+ R1, 1 111 010 101 9
+ R1, R2 111 010 011 9
= R1, 0, 1 00 010 100 101 11
= R1, R2, 0 00 010 011 100 11

Table 4
3As xε = εx = x, for every string x ∈ {0, 1}∗, in what follows we omit ε.

5

The shortest programs are

100 01010100100 01010011100

The smallest program which halts is 100 and smallest program which never halts
00010010100100.

The following register machine routine computes in d the product of two non-negative
integers a and b (see the algorithm MUL in section 4):4

instruction number instruction code length
0 &h,e 01 0001001 00110 14
1 &d,0 01 00101 100 10
2 =b,0,8 00 011 100 1110010 15
3 &e,1 01 00110 101 10
4 +d,a 111 00101 010 11
5 =b,e,8 00 011 00110 1110010 17
6 +e,1 111 00110 101 11
7 =a,a,4 00 010 010 11010 13
8 &e,h 01 00110 0001001 14
9 =a,a,c 00 010 010 00100 13

Table 5

The routine can be uniquely encoded by concatenating the binary strings coding the
instructions of the routine:

0100010010011001001011000001110011100100100110101111001010100001

1001101110010111001101010001001011010010011000010010001001000100

which is a string of length 128 bits.

4 Algorithms

Some register machine programs may be difficult to follow because of their terse syntax.
In order to facilitate understanding we sometimes present parts of them as algorithms in
pseudo-code. The notation used in these algorithms is self-explanatory (e.g. the assign-
ment instruction is denoted by Set x to v, Next x is the successor, GoTo Ln specifies
the unconditional jump, etc.).

We start with a simple example: the routine REM computes the integer remainder of
a divided by b. A local register e is initialised to b and incremented by 1 until it reaches
the value of a when the algorithm finishes. The valued of d, the result of the algorithm,
is initialised to 0 and incremented every time e is incremented. When d reaches the value
of b the value of d is reset to 0. The routine works for any non-negative integers a and b.

4We use: R1 = a, R2 = b, R3 = c, R4 = d, R5 = e, R8 = h.

6

Algorithm REM

INPUT: a >= b >= 0

OUTPUT: d=rem(a,b) i.e a=b*q+d, with 0 <= d < b, for some q

1. Set e to b

2. Set d to 0

3. if e = a

4. then STOP

5. else Next e

6. Next d

7. if d = b

8. then GoTo 2 //reset the remainder to 0

9. else GoTo 3

The register machine program corresponding to REM is

//REM Computes in d the integer remainder

// of a divided by b, assumes a>=b>=0.

//It uses the local register e to perform its task

0. &h,e //store locally the original value of e

1. &e,b //copy the value of b in e

2. &d,0 //set result to 0

3. =e,a,8 //e reached a, continue with instruction 8

4. +e,1 //as e < a, increase e

5. +d,1 //increase the result

6. =d,b,2 //result reached b, continue with instruction 2

7. =a,a,3 //continue with instruction 3

8. &e,h //restore original value in e

9. =a,a,c //computation completed, registers a, b, c and

//e have their original values and d contains

//the integer remainder of a divided by b

We continue with two algorithms, MUL and CMP, for routines which will be repeat-
edly used.

The algorithm MUL performs the multiplication of a and b and stores the product in
d. The algorithm is based on the multiplication performed as a repeated addition. The
local counter, e, keeps track of how many times a is added to itself.

Algorithm MUL

INPUT: a >= 0, b >= 0

OUTPUT: d= a*b

1. Set d to 0

2. if b = 0

3. then STOP

4 else Set e to 1

5. Set d to d+a

6. if e = b

7. then STOP

8. else Next e

9. GoTo 5

7

The register machine program and its code for the multiplication algorithm appear
in Table 5.

The algorithm CMP returns 0 if its two input values a and b are equal, returns 1
when a < b and returns 2 when b < a.

Algorithm CMP

INPUT: a >= 0, b >= 0

OUTPUT: d is 1 if a < b, d is 0 for a = b and d is 2 otherwise

1. Set e to a

2. Set f to b

3. Next e

4. Next f

5. Set d to 0

6. if e = f

7. then STOP

8. else Set d to 1

9. if e = b

10. then STOP

11. else Set d to 2

12. if f = a

13. then STOP

14. else GoTo 3

5 Legendre’s conjecture

Legendre’s conjecture [14] states that for any natural number n there exists a prime
number p such that n2 ≤ p ≤ (n + 1)2. The following algorithm checks whether for each
natural number n any of the numbers n2 +1, . . . , (n+1)2−1 is prime. If one is found the
algorithm generates the next n and so on. If for some natural n, none of the numbers
from the above set is prime the algorithm stops and the conjecture is false; otherwise,
the algorithm never stops.

The register program for Legendre’s conjecture is:

0. &n,2

1. &m,n

2. &p,1

3. =p,n,7 //m=n^2

4. +m,n

5. +p,1

6. =p,p,3

7. &M,m

8. +M,n

9. +M,n //M=n^2+2n

10. &x,m

11. =x,M,31 //no prime x was found

12. &p, 2 //is x divided by p?

8

13. &z,1 //z =1 if x prime, z=0 if p is not prime

14. =x,p,26 //x is prime

15. &e,p

16. &q,0 //compute q=rem(x,p)

17. =e,x,22

18. +e,1

19. +q,1

20. =q,p,16

21. =p,p,17

22. =q,0,25 //x is not prime

23. +p,1

24. =p,p,13

25. &z,0

26. =z,0,29 //x is not prime

27. +n,1 //x is prime

28. =p,p,1

29. +x,1

30. =p,p,11

31. % //Legendre’s conjecture is false

The register machine program for Legendre’s conjecture has 31 instructions; comput-
ing its size we get CU(Legendre�s conjecture) ≤ 422.5

6 Fermat’s last theorem

Fermat’s last theorem is one of the most famous theorems in the history of mathematics.
It states that there are no positive integers x, y, z satisfying the equation xn+yn = zn, for
any integer value n > 2. The result was conjectured by Pierre de Fermat in 1637, and it
was proven only in 1995 by A. Wiles [16] (see also [1]). Many illustrious mathematicians
failed to proved it, but their efforts stimulated the development of algebraic number
theory.

The register machine program presented below uses the integer B ≥ 5 to enumerate
all 4-tuples of integers (x, y, z, n) with z ≤ B, x, y < z, n ≤ B for which the equality
xn + yn = zn is tested.

The register machine program for Fermat’s last theorem is:

0. =a,a,20

1. &i,x //===POW(a,b)

2. &j,y

3. &k,z

4. &x,1

5. &d,a

6. =x,b,16 //d = a^b

7. &z,a //compute a*d

5We use: R1 = p, R2 = n, R3 = x, R4 = m, R5 = q, R6 = M, R7 = z, R8 = e.

9

8. &y,1

9. =y,d,13 //z = a*d

10. +y,1 //y < d

11. +z,a

12. =a,a,9

13. &d,z

14. +x,1 //x < b

15. =a,a,6

16. &x,i

17. &y,j

18. &z,k

19. =a,a,c //d = a^b

20. &B,5 //===Main program

21. &n,4

22. &z,4

23. &x,4

24. &y,4

25. &c,29

26. &a,x

27. &b,n

28. =a,a,1 //d = x^n

29. &e,d

30. &c,33

31. &a,y

32. =a,a,1 //d = y^n

33. +e,d //e = x^n + y^n

34. &a,z

35. +c,4 //c = 37

36. =a,a,1 //d = z^n

37. =e,d,52 //x^n + y^n = z^n

38. +y,1 //x^n + y^n =/= z^n

39. =y,z,41

40. =a,a,30 //y < z

41. +x,1 //y = z

42. =x,z,44

43. =a,a,24 //x < z

44. +z,1 //x = z

45. =B,z,47

46. =a,a,23 //z < B

47. +n,1 //z = B

48. =n,B,50

49. =a,a,22 //n < B

50. +B,1 //n = B

51. =a,a,21

52. % //Fermat’s last theorem is false

The register machine program for Fermat’s last theorem has 52 instructions; com-
puting its size we get CU(Fermat�s last theorem) ≤ 729.6

6We use: R1 = a, R2 = z, R3 = x, R4 = y, R5 = d, R6 = c, R7 = B, R8 = n, R9 = e, R10 = b, R11

10

7 Dyson and Goldbach conjectures, the four colour
theorem and Riemann’s hypothesis

Dyson’s first conjecture [12] states that

the reverse of a power of two is never a power of five.

Dyson’s first conjecture is motivated by the quest to find a simple true unprovable
statement in Gödel’s sense. In [12], p. 86, Dyson states:

Thanks to Kurt Gödel, we know that there are true mathematical statements

that cannot be proved. But I want a little more than this. I want a statement

that is true, unprovable, and simple enough to be understood by people who

are not mathematicians.

Dyson’s second conjecture [12] states that

Dyson’s first conjecture is unprovable.
7

The heuristic argument in support of Dyson’s second conjecture [12] is the following:

The digits in a big power of two seem to occur in a random way without
any regular pattern. If it ever happened that the reverse of a power of two
was a power of five, this would be an unlikely accident, and the chance of it
happening grows rapidly smaller as the numbers grow bigger. If we assume
that the digits occur at random, then the chance of the accident happening
for any power of two greater than a billion is less than one in a billion. It
is easy to check that it does not happen for powers of two smaller than a
billion.

In fact this conjecture was verified in [4] up to all powers 2k with k ≤ 105 and in [13]
up to all powers 2k with k ≤ 108.

Of course, if Dyson’s first conjecture is false, i.e. a counter-example is found, then
Dyson’s second conjecture is also false.

In [13] it was shown that the complexity of Dyson’s first conjecture, shortly, Dyson’s
conjecture, has an upper bound of 3,928 bits (150 register machine instructions). Here
is a shorter program written for U .

= i, R12 = j, R13 = k.
7To be precise we must specify the formal system in which Dyson’s first conjecture is unprovable. A

natural candidate is Peano Arithmetic.

11

0. =a,a,27

1. & E,e //===CMP(a,b)

2. &F,f

3. &e,a

4. &f,b

5. +e,1

6. +f,1

7. &d,0

8. =e,f,14 //a = b

9. &d,1

10. =e,b,14 //a < b

11. &d,2

12. =f,a,14 //a > b

13. =a,a,5

14. &f,F

15. &e, E

16. =a,a,c

17. & E,e //===MUL(a,b)

18. &d,0

19. =b,0,25 //ab = 0

20. &e,1

21. +d,a

22. =e,b,25 //d = ab

23. +e,1

24. =a,a,21

25. &e, E

26. =a,a,c

27. &k,1 //===MAIN PROGRAM

28. &n,1

29. +n,n

30. &c,34 // compute f = reverse of n

31. &a,n

32. &b,10

33. =a,a,1 //d = CMP(n,10)

34. =d,1,58 //n < 10

35. &f,0 //n >= 10

36. &e,b

37. &q,0

38. +q,1

39. &r,0

40. =e,n,45 //r = n mod 10, q = floor(n/10)

41. +e,1 //e < n

42. +r,1

43. =r,b,38

44. =a,a,40 //r < b

45. +f,r

46. &a,f

47. &c,49

48. =a,a,17 //d = (f+r)*10

12

49. +f,d

50. &a,q

51. +c,4 //c = 53

52. =a,a,1 //d = CMP(q,10)

53. =d,1,56 //q < 10

54. +f,q //q >= 10

55. =a,a,59

56. &n,q

57. =a,a,36

58. &f,n //reverse of n = n

59. &s,1

60. &j,0

61. +j,1

62. &c,66

63. &a,s

64. &b,5

65. =a,a,17 //d = MUL(5^(j-1),5)

66. &s,d

67. +c,5 //c = 71

68. &a,s //a = 5^j

69. &b,f //b = reverse(2^k)

70. =a,a,1 //d = CMP(s,f)

71. =d,1,61 //s < f

72. =d,0,75 //s = f

73. +k,1 //s > f

72. =a,a,29

75. % //Dyson’s conjecture is false

The register machine program for Dyson’s conjecture has 75 instructions; computing
its size we get CU(Dyson�s conjecture) ≤ 1, 064.8

8 Final comments

We have calculated the upper bounds on the CU complexity of the six mathematical
statements as follows: Goldbach’s conjecture 756, Legendre’s conjecture 422, Fermat’s
last theorem 729, Dyson’s conjecture 1,064, the Riemann hypothesis 2,741, the four
colour theorem 3,289. Accordingly, the Legendre’s conjecture, Fermat’s last theorem and
Goldbach’s conjecture are in CU,1, Dyson’s conjecture is in CU,2, the Riemann hypothesis
is in CU,3, and the four colour theorem is in CU,4.

It is still possible to improve the size of the programs for these statements or to use a
different implementation of the method. We conjecture that, with the possible exception
of the four colour theorem, our ranking of the six mathematical statements cannot be
improved. It is open whether for every i ≥ 1, CU,i ⊂ CU,i+1.

8We use: R1 = a, R2 = e, R3 = f, R4 = d, R5 = b, R6 = c, R7 = n, R8 = q, R9 = E, R10 = r, R11

= s, R12 = F, R13 = k, R14 = j.

13

Finally, the halting problem can be expressed in Peano Arithmetic (PA), so reducing
a problem to an instance of the halting problem shows the possibility of expressing that
problem in PA. In some cases this was evident without any reducibility, in others, like
the Riemann hypothesis, this was not so clear. In all cases it is interesting to look for
solutions of the problem in PA (see [17] for a discussion of the Fermat’s last theorem).

Acknowledgement

We thank M. Dinneen and J. Hertel for comments, suggestions, and extensive discussions
which improved this paper. We thank also the anonymous referee for critical comments
and useful suggestions.

References

[1] A. Aczel. Fermat’s Last Theorem: Unlocking the Secret of an Ancient Mathematical

Problem, Dell Publishing, New York, 1996.

[2] F. E. Browder (ed.). Mathematical Developments Arising from Hilbert Problems,
Amer. Math. Soc., Providence, RI, 1976.

[3] C. S. Calude. Information and Randomness: An Algorithmic Perspective, 2nd Edi-
tion, Revised and Extended, Springer-Verlag, Berlin, 2002.

[4] C. S. Calude. Dyson statements are likely to be true but unprovable, www.cs.
auckland.ac.nz/~cristian/fdyson.pdf, 2008.

[5] C. S. Calude, E. Calude. Evaluating the Complexity of Mathematical Problems.
Part 1 Complex Systems, in print. See also CDMTCS Research Report 353, 2009,
19 pp.

[6] C. S. Calude, E. Calude. The Complexity of the Four Colour Theorem, CDMTCS

Research Report 368, 2009, 14 pp.

[7] C. S. Calude, E. Calude, M. J. Dinneen. A new measure of the difficulty of prob-
lems, Journal for Multiple-Valued Logic and Soft Computing 12 (2006), 285–307.

[8] C. S. Calude, M. J. Dinneen, C.-K. Shu. Computing a glimpse of randomness,
Experimental Mathematics 11, 2 (2002), 369–378.

[9] E. Calude. The Complexity of the Goldbach’s Conjecture and Riemann’s Hypoth-
esis, CDMTCS Research Report 369, 2009, 14 pp.

[10] G. J. Chaitin. Algorithmic Information Theory, Cambridge University Press, Cam-
bridge, 1987. (third printing 1990)

[11] M. Davis, Y. V. Matiyasevich, J. Robinson. Hilbert’s tenth problem: Positive
aspects of a negative solution, in [2], 323–378.

[12] F. Dyson. Contribution to J. Brockman (ed.). What to Believe but Cannot Prove,
Pocket Books, London, 2005, 85–86. See also http://www.edge.org/q2005/q05_
9.html#dysonf.

14

[13] J. Hertel. On the Difficulty of Goldbach and Dyson Conjectures, CDMTCS Re-

search Report 367, 2009, 15pp.

[14] http://mathworld.wolfram.com/LegendresConjecture.html (visited Decem-
ber 31, 2009).

[15] Y. V. Matiyasevich. Hilbert’s Tenth Problem, MIT Press, Cambridge, MA, 1993.

[16] A. Wiles. Modular elliptic curves and Fermat’s Last Theorem, Annals of Mathe-

matics 141 (3) (1995), 443–551.

[17] S. Wolfram. A New Kind of Science, Wolfram Research, 2002.

15

