Skip to main content
Log in

Speed of operation of equivalent time methods for conversion of noisy signals: A review

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Based on the example of the conversion of noisy UWB radar signals, the speed of operation of comparator-type methods for equivalent time conversion of signals is compared. As a signal model, a sine monocycle is used. The obtained results are also compared with the efficiency of noise suppression in gated equivalent time converters. As a measure of the speed of operation of comparator-type converters, the minimal number of comparison operations of the signal and the threshold required for reaching the specified sensitivity and dynamic range is used. As a measure of the speed of operation, the number of averagings required for reaching the specified sensitivity is used for gated converters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahrs, M., 50 years of TF and microwave sampling, IEEE Trans. Micr. Theor. Tech., 2003, vol. 51, no. 6, pp. 1787–1805.

    Article  Google Scholar 

  2. Askerzade, I.N., Josephson-effect samplers: A review, Tech. Phys., 2006, vol. 51, no. 4, pp. 393–400.

    Article  Google Scholar 

  3. Bodin, P., Jacobsen, M.L., Kuehle, A., Bindslev Hansen, J., Davidson, A., Brady, M., Olsen, L., and Qualmann, W., An automated 55 GHz cryogenic Josephson sampling oscilloscope, Rev. Sci. Instrum., 1993, vol. 64, no. 2, pp. 561–567.

    Article  Google Scholar 

  4. Hidaka, M., Satoh, T., Koike, M., and Tahara, S., High-resolution measurement by a high-Tc superconductor sampler, IEEE Trans. Appl. Supercond., 2001, vol. 11, no. 1, pp. 986–989.

    Article  Google Scholar 

  5. Ryabinin, Yu.A., Stroboskopicheskoe ostsillografirovanie (Stroboscopic Oscillation), 2nd ed., Gorelik, E.M., Ed., Moscow: Sov. Radio, 1972.

  6. McEwan, T.E., Ultra-wideband receiver, US Patent 5345471, 1994.

    Google Scholar 

  7. Riabinin, Yu.A. and Aksenov, N.Y., Scientific and technological development of stroboscopic methods of conversion at Nizhegorodsky institute of electronic measurements “Kwarts”, Electron. Electr. Eng., 2009, no. 8 (96), pp. 113–114.

    Google Scholar 

  8. www.geozondas.com/product.php?pusl=3

  9. Greitans, M., Hermanis, E., and Supols, G., Analytic model and bilateral approximation for clocked comparator, Proc. Int. Conf. on Signals and Electronic Systems (ICSES 2010), Gliwic, Poland, 2010, pp. 7–10.

    Google Scholar 

  10. Agafonovs, N. Supols, G., Design and evaluation of stroboscopic signal converter based on discrete transistor clocked comparator, Proc. 13th Biennial Baltic Electronic Conf. (BEC), 2012, art. 6376817, pp. 69–73.

    Google Scholar 

  11. Askerzade, I.N., Tunnel Josephson junctions as highly sensitive comparators in stroboscopic converters, Tech. Phys., 2000, vol. 45, no.1, pp. 66–69.

    Article  Google Scholar 

  12. Askerzade, I.N. and Samet, R., Transfer characteristic of a goto pair in small-size Josephson junctions, Tech. Phys. Lett., 2008, vol. 34, no. 9, pp. 737–739.

    Article  Google Scholar 

  13. Chibashi, M., Eguchi, K., Nakagawa, S., and Waho, T., A fully-differential resonant-tunneling circuit, Inst. Electr. Inform. Comm. Eng. (IEICE) Electronics Express, 2005, vol. 2, no. 7, pp. 221–225.

    Google Scholar 

  14. Beiner, E. and Kruminsh, K., Research of dynamics of a gated balanced comparator, Autom. Cont. Comp. Sci., 2011, vol. 45, no. 6, pp. 314–321.

    Article  Google Scholar 

  15. Carr, P.H., Potential microwave applications of high temperature superconductors, Microw. J., 1987, vol. 30, no. 6, pp. 91–94.

    MathSciNet  Google Scholar 

  16. Tonouchi, M., Fujimaki, A., Tanabe, K., Enpuku, K., Nikawa, K., and Kobayashi, T., Recent topics in high-Tc superconductive electronics, Jpn. J. Appl. Phys., 2005, vol. 44, no. 11, pp. 7735–7749.

    Article  Google Scholar 

  17. Maruyama, M., Suzuki, H., Hato, T., Wakana, H., Nakayama, K., Ishimaru, Y., Horibe, O., Adachi, S., Kamitani, A., Suzuki, K., Oshikubo, Y., Tarutani, Y., and Tanabe, K., Observation of 45 GHz current waveforms using HTS sampler, Proc. 17th Int. Symp. on Superconductivity, 2005, vols. 426–431, Part 2, pp. 1661–1667.

    Google Scholar 

  18. Suzuki, H., Hato, T., Maruyama, M., Wakana, H., Nakayama, H., Ishimaru, Y., Horibea, O., Adachia, S., Kamitania, A., Suzuki, K., Oshikubo, Y., Tarutani, Y., Tanabe, K., Konno, T., Uekusa, K., Sato, N., and Miyamoto, H., Progress in HTS sampler development, Proc. 17th Int. Symp. on Superconductivity, 2005, vols. 426–431, Part 2, pp. 1643–1649.

    Google Scholar 

  19. Maruyama, M., Wakana, H., Hato, T., Suzuki, H., Tanabe, K., Uekusa, K., Konno, T., Sato, N., and Kawabata, M., HTS sampler with improved circuit design and layout, Inst. Electr. Inform. Comm. Eng. IEICE Trans. Electron., 2007, vol. E90-C, no. 3, pp. 579–587.

    Google Scholar 

  20. Chen, X. and Kiaei, S., Monocycle shapes for ultra wideband system, IEEE Int. Symp. on Circuits and Syst. (ISCAS), 2002, vol. 1, pp. 597–600.

    Google Scholar 

  21. Kruminsh, V. and Plotsinsh, V., Adaptive k-up-and-down method for comparator type equivalent time conversion of UWB radar signals, Autom. Cont. Comp. Sci., 2012, vol. 46, no. 6, pp. 280–287.

    Article  Google Scholar 

  22. Wasan, M.T., Stochastic Approximation. Cambridge Tracts in Mathem. Mathem. Phys., Cambridge: University Press, 1969.

    Google Scholar 

  23. Karklin’sh, V. and Krumin’sh, K., Adaptive methods in discrete stroboscopy, Autom. Cont. Comp. Sci., 2010, vol. 44, no. 5, pp. 266–271.

    Article  Google Scholar 

  24. Kruminsh, V. and Plotsinsh, V., Dynamic ranges of discrete stroboscopic methods, Autom. Cont. Comp. Sci., 2011, vol. 45, no. 5, pp. 277–283.

    Article  Google Scholar 

  25. Popov, L.N., Analysis of noise nuisance effect on statistical uncertainty of relay-type pulsed system of regulation, Izv. Vuzov. Priborostroenie, 1970, no. 9, pp. 37–41.

    Google Scholar 

  26. Micropower Impulse Radar, Science and Technology Review, Lawrence Livermore National Laboratory, Livermore, California, UCRL-52000-96-1/2, 1996, pp. 16–29.

  27. www.geozondas.com/Old-Site/SD10806/8-ch-Specifications.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kruminsh.

Additional information

Original Russian Text © K. Kruminsh, V. Plotsinsh, 2013, published in Avtomatika i Vychislitel’naya Tekhnika, 2013, No. 6, pp. 42–52.

About this article

Cite this article

Kruminsh, K., Plotsinsh, V. Speed of operation of equivalent time methods for conversion of noisy signals: A review. Aut. Control Comp. Sci. 47, 318–325 (2013). https://doi.org/10.3103/S0146411613060072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411613060072

Keywords

Navigation