Skip to main content
Log in

Design of absolutely robust control systems for multilinked plants on the basis of an uncertainty hyperobserver

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

A new approach to control of indeterminate dynamic plants based on the Lyapunov function method is proposed. The concept of this approach consists in compensating for the general components of the plant’s incomplete model as potential sources of parasite dynamics and imparting the desired behavior to the reduced system. The condition of absolute observability of the indeterminate plant’s dynamics is obtained.

In the hyperobserver, two approaches are combined that are based on a great gain coefficient and an uncertainty observer, respectively. Consequently, the proposed system is a combined robust system and has a number of qualities not inherent in any of the local systems taken separately.

The possibility of unlimited increasing the gain coefficient allows suppression of the undercompensated model components to an indefinitely small value. This ensures a high response speed and high tracking accuracy. In the limit, the system is described by a linear homogeneous equation. This feature allows one to determine the process control settings on the basis of the set qualitative characteristics using methods of the linear system theory, in particular, the modal control method. The modal problems are solved in the Matlab/Simulink environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andronov, A.A. and Pontryagin, L.S., Rough Systems, Doklady Akad. Nauk SSSR, 1937, vol. 14, p. 247.

    Google Scholar 

  2. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space solutions to standard H2 and H control problems, IEEE Trans. Automat. Control, 1989, vol. 34, no. 8, pp. 834–847.

    Article  MathSciNet  Google Scholar 

  3. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, New York: Prentice Hall, 1996.

    MATH  Google Scholar 

  4. Dorato, P.U., Parameter design example: Robust flight control for windshear protection, Proc. 29nd Conf. Dec. Control, Vol. 1, 1990.

  5. Chen, Y.H. and Piontek, E.D., Robust modal control of distributed parameter system with uncertainty, Proc. Amer. Contr., 1990.-vol. 2, pp. 2014–2019.

    Google Scholar 

  6. Poznyak, A.S., Osnovy robastnogo upravleniya (N -teoriya) (Foundations of Robust Control (H Theory)), Moscow: Mos. Fiz. Tekhn. Inst., 1991.

    Google Scholar 

  7. Bhattacharyya, S.P., Chapellat, H., and Keel, L.H., Robust Control: The Parametric Approach, New York: Prentice Hall, 1995.

    MATH  Google Scholar 

  8. Nikiforov, V.O., Adaptive and Robust Control with Compensation of Perturbations, St.-Petersburg, Nauka, 2003.

    Google Scholar 

  9. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  10. Pupkov, K.A. and Egupov, N.D., Metody robastnogo controlya, neuro-fuzzy I adaptivnogo upravleniya (Methods of Robust, Neuro-fuzzy and Adaptive Control), Noscow: Mos. Gos. Tekhn. Univ., 2000.

    Google Scholar 

  11. Potapenko, E.M., Comparative evaluation of robust control systems using various types of observers, J. Compt. Syst. Sci. Int., 1996, vol. 34, no. 4, pp. 123–131.

    MathSciNet  Google Scholar 

  12. Potapenko, E.M., Study of robust combined control systems using observers, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 1996, no. 2, pp. 104–108.

    Google Scholar 

  13. Rustamov, G.A., Absolutely robust control systems, Autom. Control Compt. Sci., 2013, vol. 47, pp. 227–241.

    Article  Google Scholar 

  14. Rustamov, G.A., Design of robust control system for objects with internal delay, Proc. 7th Int. Conf. “Application of Information and Communication Technologies,” Baku, Azerbaijan, 2013, pp. 98–101. www.aict.info/2013/

    Google Scholar 

  15. Rustamov, G.A., Gardashov, S.G., and Rustamov, R.G., Stabilization of nonlinear systems on the basis of the method of the Lyapunov function with the nonlinearity and disturbance estimation, Autom. Control Compt. Sci., 2010, vol. 44, pp. 47–52.

    Article  Google Scholar 

  16. Rustamov, G.A., Constructing quasi-invariant control systems based on the Lyapunov function method for non-linear plants with an incomplete mathematical model, Autom. Control Compt. Sci., 2012, vol. 46, pp. 95–102.

    Article  Google Scholar 

  17. Rustamov, G.A., Invariant control systems of second order, Proc. 4th Int. Conf. “Problems” of Cybernetics and “Informatics”, Vol. 4, Baku, Azerbaijan, 2012.

  18. Utkin, V.I.. Sliding Modes in Optimization and Control Problems, New York: Springer-Verlag, 1992.

    Book  Google Scholar 

  19. Shevtsov, G.S., Lineinaya Algebra (Linear Algebra), Moscow: Gardariki, 1999.

    Google Scholar 

  20. Drazenovic, B., The invariance conditions in variable structure systems, Automatica, 1969, vol. 5, no. 3, pp. 287–295.

    Article  MATH  MathSciNet  Google Scholar 

  21. Ho, H.F., Wong, Y.K. and Rad, A.B., Adaptive fuzzy sliding mode control design: Lyapunov approach, Proc. IEEE Int. Conf. on Fuzzy System, 2001, pp. 6–11; Proc. 5th Asian. Control Conference, 2004, Vol. 3, pp. 1502–1507.

    Google Scholar 

  22. Li, J.H., Li, T.H., and Chen, C.Y., Design of Lyapunov function based fuzzy logic controller for a class of discrete — time systems, Int. J. Fuzzy Systems, 2007, vol. 9, no. 1.

    Google Scholar 

  23. Geng, F. and Zhu, X., Novel adaptive fuzzy control of the inverted pendulum system, Proc. IEEE Int. Conf. Control and Automation, Guangzhou. China, 2007, pp. 284–288.

    Google Scholar 

  24. Meerov, M.V., Sintez struktur sistem avtomaticheskogo upravleniya vysokoi tochnosti (Synthesis of High Exactness Automatic Control System Structures), Moscow: Nauka, 1967.

    Google Scholar 

  25. Meerov, M.V., Issledovanie i optimizatsiya mnogosvyaznykh sistem upravleniya (Study and Optimization of Multi-connected Control Systems), Moscow, Nauka, 1986.

    MATH  Google Scholar 

  26. Meerov, M.V., Akhmetzyanov, A.V., Bershchanskii, Ya.M., et al., Mnogosvyaznye sistemy upravleniya (Multiconnected Control Systems) Meerov, M.V., Ed., Moscow: Nauka, 1990.

  27. Balas, G., Chiang, R., Packard, A., and Safonov, M., Robust Control Toolbox™ Getting Started Guide, The Math-Works, 2010.

    Google Scholar 

  28. Krasnoshchechenko, V.I., Nelineinye sistemy: geometricheskie metody analiza i sinteza (Nonlinear Systems: Geometrical Methods of Analysis and Synthesis), Moscow: Mos. Gos. Tekhn. Univ., 2005.

    Google Scholar 

  29. Le Chan Tkhang, Synthesis of nonlinear regulators with variable structure for one class on nonlinear objects, Vestn. Dagest. Gos. Tekhn. Univ., 2007, vol. 7, pp. 360–368.

    Google Scholar 

  30. Kuznetsov, A.P., Stankevich, N.V., and Chernyshov, N.Yu., Stabilization of chaos in the Rössler system by pulsed or harmonic signal, Izv. Vysch. Uchebn. Zaved., Prikl. Nelin. Dinam., 2010, vol. 18, no. 4, pp. 3–15.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Rustamov.

Additional information

Original Russian Text © G.A. Rustamov, 2014, published in Avtomatika i Vychislitel’naya Tekhnika, 2014, No. 3, pp. 13–31.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustamov, G.A. Design of absolutely robust control systems for multilinked plants on the basis of an uncertainty hyperobserver. Aut. Control Comp. Sci. 48, 129–143 (2014). https://doi.org/10.3103/S0146411614030055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411614030055

Keywords