Skip to main content
Log in

Robust control design for uncertain objects with time delay on the state

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper is devoted to developing methodology for designing robust control systems with large gain coefficients. The problem of robust control of uncertain objects with time-delayed states is solved based on the Lyapunov method. An unlimited increase in the gain coefficient of a controller allows the general components of an uncertain model to be suppressed to the maximum extent possible without a loss of stability. Within the limits, the system is described by a hyperplane equation. The quality parameters are determined by tuning the hyperplane coefficients. This equivalent-to-robust control enables one to track a reference signal with the desired accuracy for a wide class of uncertainties. The simulation results illustrate the effectiveness and efficiency of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall, J.E., Gorecki, H., Korytowski, A., and Walton, K., Time-Delay Systems: Stability and Performance Criteria with Applications, London: Ellis Horwood, 1992.

    MATH  Google Scholar 

  2. Gu, K., Kharitonov, V.L., and Chen, J., Stability of Time-Delay Systems, Boston: Birkhauser, 2003.

    Book  MATH  Google Scholar 

  3. Bozorg, M. and Termeh, F., Domains of PID controller coefficients which guarantee stability and performance for LTI time-delay systems, Automatica, 2011, vol. 47, no. 9, pp. 2122–2125.

    Article  MathSciNet  MATH  Google Scholar 

  4. Furtat, I.B., Adaptive and robust control systems with perturbation and delay, Doctoral Dissertation, St. Petersburg, 2012.

    Google Scholar 

  5. Bobtsov, A.A. and Pyrkin, A.A., Adaptivnoe i robastnoe upravlenie s kompensatsiei neopredelennostei (Adaptive and Robust Control with Compensation of Uncertainty), St. Petersburg: NIU ITMO, 2013.

    Google Scholar 

  6. Imangazieva, A.V., Robust automatic control system with compensation of the delay under stationarity, Vestn. Astrakh. Gos. Tekh. Univ., Ser. Upr. Vychisl. Tekh. Inf., 2011, no. 2, pp. 30–36.

    Google Scholar 

  7. Lisitsya, M.P. and Lisitsya, P.M., Robust adaptive control system with compensation of the unknown delay under non-stationarity with outside influence, Vost.-Evr. Zh. Peredovykh Tekhnol., 2015, no. 3/9 (75), pp. 39–45.

    Google Scholar 

  8. Mamedov, H.A. and Rustamov, G.A., Design of robust control systems for objects with internal time delay, The 7th International Conference on Application of information and communication technologies, 2013, Baku, pp. 98–101.

    Google Scholar 

  9. Brown, C. and Coohms, D.J., Notes on Control with Delay, New York, 1991.

    Google Scholar 

  10. Kolmanovskii, V.B. and Nosov, V.G., Ustoichivost’ i periodicheskie rezhimy sistem s posledeistviem (Stability and Periodical Modes with Aftereffects), Moscow: Nauka, 1981.

    Google Scholar 

  11. Kir'yanen, A.I., Ustoichivost’ sistem s posledeistviem i ikh prilozheniya (Stability of the Systems with Aftereffect and Applications), St. Petersburg: Izd. S-Peterb. Univ., 1994.

    Google Scholar 

  12. Furtat, I.B. and Tsykunov, A.M., Modified algorithm of high order adoption for the system with delay on state, Vestn. Astrakh. Gos. Tekh. Univ., 2006, no. 1, pp. 24–33.

    Google Scholar 

  13. Min, Wu, Yong, He, and Jin-Hua, She, Stability Analysis and Robust Control of Time-Delay Systems, Heidelberg, Dordrecht, London, New York: Springer, 2010.

    MATH  Google Scholar 

  14. Tsykunov, A.M., Adoptive control with compensation of the delay influence in the controller, Dokl. Ross. Akad. Nauk, 2000, no. 4, pp. 78–81.

    MathSciNet  Google Scholar 

  15. Parsheva, E.A. and Tsykunov, A.M., Adoptive control of the objects with delay control with scalar input and output, Avtom. Telemekh., 2001, no. 1, pp. 142–149.

    MathSciNet  MATH  Google Scholar 

  16. Narendra, K.S., Annaswamy, A.M., and Singh, R.P., A general approach to the stability analysis of adaptive systems, Int. J. Control, 1985, vol. 41, no. 1, pp. 193–216.

    Article  MathSciNet  MATH  Google Scholar 

  17. Niculescu, S.I. and Annaswamy, A.M., An adaptive Smith-controller for time-delay systems with relative degree n ≤ 2, Syst. Control Lett., 2003, vol. 49, no. 5, pp. 347–358.

    Article  MathSciNet  MATH  Google Scholar 

  18. Tsykunov, A.M., Adaptivnoe i robastnoe upravlenie dinamicheskimi ob"ektami (Adoptive and Robust Control of the Dynamic Objects), Moscow: Fizmatlit, 2009.

    Google Scholar 

  19. Kristic, M., Delay Compensation for Nonlinear, Adaptive, and PDE Systems, Birkhauser, 2009.

    Book  Google Scholar 

  20. Emel’yanov, S.V. and Korovin, S.K., Novye tipy obratnoi svyazi: Upravlenie pri neoprede-lennosti (New Types of Feedback Control under Uncertainties), Moscow: Nauka, 1997.

    Google Scholar 

  21. Pedro, A. and Pedro, G., Robust control design for long time-delay systems, J. Process Control, 2009, no. 19, pp. 1640–1648.

    Article  Google Scholar 

  22. Mahmoud, M.S., Robust Control and Filtering for Time-Delay Systems, CRC Press Reference, 2000.

    MATH  Google Scholar 

  23. Palhares, R., Peres, P., and de Souza, C., Robust filtering for linear continuous-time uncertain systems with multiple delays: An LMI approach, The 3rd IFAC Conf. Robust Control Design, Prague, 2000.

    Google Scholar 

  24. Lozano, R., Castillio, P., Garcia, P., and Dzul, A., Robust prediction-based control for unstable delay systems: Application to the yaw control of a mini-helicopter, Automatica, 2004, vol. 40, no. 4, pp. 603–612.

    Article  MathSciNet  MATH  Google Scholar 

  25. Fiodorov, I. and Izvoreanu, B., The approximate models of objects with second order inertia and time delay and tuning of controllers, The 7th International Conference on Development and Application Systems, Suceava, 2004.

    Google Scholar 

  26. Julio, E.N. and Eduardo, F.C., Dead-time compensators: A survey, J. Control Eng. Pract., no. 16, 2007, pp. 407–428.

    Google Scholar 

  27. Rustamov, G.A., Synthesis of the finite controls with variable structure for the regulated objects with delay, Teor. Sist. Upr., 2001, no. 4, pp. 44–48.

    MathSciNet  Google Scholar 

  28. Rustamov, G.A., Gasanov, Y.G., and Rustamov, R.G., New strategy of the variable-structure finite control of controlled plants with time lags, Autom. Control Comput. Sci., 2009, no. 43 (3), pp. 129–137.

    Article  Google Scholar 

  29. Bukov, V.N., Vlozhenie Sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (Enclosured Systems: Analytical Approach to the Analysis and Synthesis of Matrix Systems), Izd. Nauchn. Lit. N.F. Bochkarevoi, 2006.

    Google Scholar 

  30. Rustamov, G.A., Absolutely robust control systems, Autom. Control Comput. Sci., 2013, vol. 7, no. 5, pp. 227–241.

    Article  Google Scholar 

  31. Rustamov, G.A., Robust control systems with increased capability, Izv. Tomsk. Politekh. Univ., 2014, vol. 324, no. 5, pp. 13–19.

    Google Scholar 

  32. Rustamov, G.A., K8–robust control systems, Mekhatronika Avtom. Upr., 2015, no. 7, pp. 17–25.

    Google Scholar 

  33. Rustamov, G.A. and Rustamov, R.G., On a K8-robust control systems, Prospero, 2015, no. 6 (18), pp. 30–33.

    Google Scholar 

  34. Rustamov, G.A., Construction of the tracking invariant systems on the base of equivalent robust control, Vost.-Evr. Zh. Peredovykh Tekhnol., 2015, no. 2 (73), pp. 50–55. doi 10.15587/1729–4061.2015.37177

    Google Scholar 

  35. Meerov, M.V., Sintez struktur sistem avtomaticheskogo upravleniya vysokoi tochnosti (Synthesis of the Structure of Automatic Control Systems with High Performance), Moscow: Nauka, 1967.

    Google Scholar 

  36. Vostrikov, A.S., Sintez sistem regulirovaniya metodom lokalizatsii (Synthesis of the Control Systems by the Localization Method), Novosibirsk: Izd. NGTU, 2007.

    Google Scholar 

  37. Vostrikov, A.S., High derivative and gig coefficients in the problem of control of the nonlinear nonstationary objects, Mekhatronika Avtom. Upr., 2008, no. 5, pp. 2–7.

    Google Scholar 

  38. Filimonov, A.B. and Filimonov, N.B., Big gain coefficients method and effect of the motion localization in the problem of synthesis of the automatic control system, Mekhatronika Avtom. Upr., 2009, no. 2 (9), pp. 2–10.

    Google Scholar 

  39. Utkin, V.I., Sliding Modes in Optimization and Control Problems, New York: Springer, 1992.

    Book  MATH  Google Scholar 

  40. Birch, H., Self-Organization in the Van der Pol Generator, Sheffild Univ., 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Rustamov.

Additional information

Original Russian Text © G.A. Rustamov, 2016, published in Avtomatika i Vychislitel’naya Tekhnika, 2016, No. 3, pp. 71–82.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustamov, G.A. Robust control design for uncertain objects with time delay on the state. Aut. Control Comp. Sci. 50, 133–140 (2016). https://doi.org/10.3103/S0146411616030056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411616030056

Keywords