Skip to main content
Log in

On-line kernel clustering based on the general regression neural network and T. Kohonen’s self-organizing map

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The clustering system based on the evolving general regression neural network and self-organizing map of T.Kohonen, is proposed in the paper. The tuning of system is based on “lazy” learning and self-learning using the principle “Winner takes more” at the same time as neighborhood function the output signal of the hybrid network is used. The system’ implementation is characterized by numerical simplicity. The evolving neural network processes data in an online mode and doesn’t suffer from the curse of dimensionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rutkowski, L., Computational Intelligence. Methods and Techniques, Berlin-Heidelberg: Springer-Verlag, 2008.

    Book  MATH  Google Scholar 

  2. Mumford, C. and Jain, L., Computational Intelligence. Collaboration, Fuzzy and Emergence, Berlin: Springer-Vergal, 2009.

    MATH  Google Scholar 

  3. Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., and Held, P., Computational Intelligence. A Methodological Introduction, Berlin: Springer, 2013.

    MATH  Google Scholar 

  4. Du, K.-L. and Swamy, M.N.S., Neural Networks and Statistical Learning, London: Springer-Verlag, 2014.

    Book  MATH  Google Scholar 

  5. Han, J. and Kamber, M., Data Mining: Concepts and Techniques, Amsterdam: Morgan Kaufmann Publ., 2006.

    MATH  Google Scholar 

  6. Aggarwal, C.C., Data Mining, Cham: Springer, Int. Publ., Switzerland, 2015.

    Book  MATH  Google Scholar 

  7. Aggarwal, C.C. and Reddy, C.K., Data Clustering. Algorithms and Application, Boca Raton: CRC Press, 2014.

    MATH  Google Scholar 

  8. Xu, R. and Wunsch, D.C., Clustering, Hoboken, NJ: John Wiley & Sons, Inc., 2009.

    Google Scholar 

  9. Haykin, S., Neural Networks. A Comprehensive Foundation, Upper Saddle River, NJ: Prentice Hall, Inc., 1999.

    MATH  Google Scholar 

  10. Kohonen, T., Self-Organizing Maps, Berlin: Springer-Verlag, 1995.

    Book  MATH  Google Scholar 

  11. Bifet, A., Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams, IOS Press, 2010.

    MATH  Google Scholar 

  12. MacDonald, D. and Fyfe, C., Clustering in data space and feature space, ESANN'2002 Proc. European Symp. on Artificial Neural Networks, Bruges (Belgium), 2002, pp. 137–142.

    Google Scholar 

  13. Girolami, M., Mercer kernel-based clustering in feature space, IEEE Trans. Neural Networks, 2002, vol. 13, no. 3, pp. 780–784.

    Article  Google Scholar 

  14. Camastra, F. and Verri, A., A novel kernel method for clustering, IEEE Trans. Pattern Anal. Mach. Intell., 2005, no. 5, pp. 801–805.

    Article  Google Scholar 

  15. Schölkopf, B. and Smola, A., Learning with Kernels, Cambridge, M.A.: MIT Press, 2002.

    MATH  Google Scholar 

  16. Vapnik, V.N. and Chervonenkis, A.Ja., Pattern Recognition Theory (The Nature of Statistical Learning Theory, Moscow: Nauka, 1974.

    MATH  Google Scholar 

  17. Cortes, C. and Vapnik, V., Support vector networks, Mach. Learn., 1995, no. 20, pp. 273–297.

    MATH  Google Scholar 

  18. Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., and Vandewalle, J., Least Squares Support Vector Machines, Singapore: World Scientific, 2002.

    Book  MATH  Google Scholar 

  19. Parzen, E., On the estimation of a probability density function and the mode, Ann. Math. Stat., 1962, no. 38, pp. 1065–1076.

    Article  MathSciNet  MATH  Google Scholar 

  20. Specht, D.F., A general regression neural network, IEEE Trans. Neural Networks, 1991, vol. 2, pp. 568–576.

    Article  Google Scholar 

  21. Cover, T.M., Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition, IEEE Trans. Electron. Comput., 1965, no. 14, pp. 326–334.

    Article  MATH  Google Scholar 

  22. Zahirniak, D., Chapman, R., Rogers, S., Suter, B., Kabrisky, M., and Piati, V., Pattern recognition using radial basis function network, Proc 6th Ann. Aerospace Application of Artificial Intelligence Conf., OH: Dayton, 1990, pp. 249–260.

    Google Scholar 

  23. Angelov, P., Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems, Heidelberg-New York: Springer-Verlag, 2002.

    Book  MATH  Google Scholar 

  24. Kasabov, N., Evolving Connectionist Systems, London: Springer-Verlag, 2003.

    Book  MATH  Google Scholar 

  25. Angelov, P. and Kasabov, N., Evolving computational intelligence systems, Proc. 1st Int. Workshop on Genetic Fuzzy Systems, Granada: Spain, 2005.

    Google Scholar 

  26. Lughofer, E., Evolving Fuzzy Systems–Methodologies, Advanced Concepts and Applications, Berlin-Heidelberg: Springer-Verlag, 2011.

    Book  MATH  Google Scholar 

  27. Bodyanskiy, Ye.V., Tyshchenko, O.K., and Deineko, A.O., An evolving radial basis neural network with adaptive learning of its parameters and architecture, Autom. Control Comput. Sci., 2015, vol. 49, no. 5, pp. 255–260.

    Article  Google Scholar 

  28. Bodyanskiy, Ye.V. and Rudenko, O.G., Artificial Neural Networks: Architectures, Learning, Application, Kharkiv: TELETECH, 2004.

    Google Scholar 

  29. Bodyanskiy, Ye., Tyshchenko, O., and Deineko, A., Evolving Neuro-Fuzzy Systems with Kernel Activation Functions. Their Adaptive Learning for Data Mining Tasks, Saarbrucken: LAP LAMBERT Academic Publishing, 2015.

    Google Scholar 

  30. Frank, A. and Asuncion, A., UCI Machine Learning Repository, Irvine, CA: University of California, School of Information and Computer Science, 2013. http://archive.ics.uci.edu/ml.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Deineko.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodyanskiy, Y.V., Deineko, A.O. & Kutsenko, Y.V. On-line kernel clustering based on the general regression neural network and T. Kohonen’s self-organizing map. Aut. Control Comp. Sci. 51, 55–62 (2017). https://doi.org/10.3103/S0146411617010023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411617010023

Keywords

Navigation