Skip to main content
Log in

A sufficient and necessary condition for stabilization of zeros in discrete-time multirate sampled systems

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

It is well known that the presence of unstable zeros limits the control performance, which can be achieved, and some control schemes cannot be directly applied. This manuscript investigates a sufficient condition for stabilization of zeros in the discrete-time multirate sampled systems. It is shown that the discretization zeros, especially sampling zeros, can be arbitrarily placed inside the unit circle in the case of relative degree being greater than or equal to three and multirate input and hold, such as generalized sampled-data hold function (GSHF), for the linear continuous-time systems when the sampling period T tends to zero. Moreover, the authors further consider the multivariable case, which has a similar asymptotic behavior. Finally, the simulation proves the validity of the method, and we also propose a hold design that places the sampling zeros asymptotically to the origin for fast sampling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astrom, K.J., Hagander, P., and Sternby, J., Zeros of sampled systems, Automatica, 1984, vol. 20, pp. 31–38.

    Article  MathSciNet  MATH  Google Scholar 

  2. Zeng, C., Liang, S., Li, H., and Su, Y., Current development and future challenges for zero dynamics of discrete- time systems, Control Theory Appl., 2013, vol. 30, no. 10, pp. 1213–1230.

    MATH  Google Scholar 

  3. Hagiwara, T. and Araki, M., Properties of limiting zeros of sampled systems, Trans. Inst. Electr. Eng. Jpn., 1990, vol. 110-C, no. 4, pp. 235–244.

    Google Scholar 

  4. Hagiwara, T., Analytic study on the intrinsic zeros of sampled-data system, IEEE Trans. Autom. Control, 1996, vol. 41, pp. 263–783.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hagiwara, T., Yuasa, T., and Araki, M., Stability of the limiting zeros of sampled-data systems with zero- and first-order holds, Int. J. Control, 1993, vol. 58, pp. 1325–1346.

    Article  MathSciNet  MATH  Google Scholar 

  6. Weller, S.R., Moran, W., Ninness, B., and Pollington, A.D., Sampling zeros and the Euler-Frobenius polynomials, IEEE Trans. Autom. Control, 2001, vol. 46, pp. 340–343.

    Article  MathSciNet  MATH  Google Scholar 

  7. Blachuta, M.J., On zeros of pulse transfer functions, IEEE Trans. Autom. Control, 1999, vol. 44, pp. 1229–1234.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zeng, C., Liang, S., and Li, H., The properties of zero dynamics for nonlinear discretized systems with time delay via Taylor method, Nonlinear Dyn., 2015, vol. 79, no. 1, pp. 11–25.

    Article  MathSciNet  MATH  Google Scholar 

  9. Weller, S.R., Limiting zeros of decouplable MIMO systems, IEEE Trans. Autom. Control, 1999, vol. 44, pp. 292–300.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishitobi, M., Nishi, M., and Kunimatsu, S., Asymptotic properties and stability criteria of zeros of sampled-data models for decouplable MIMO systems, IEEE Trans. Autom. Control, 2013, vol. 58, no. 11, pp. 2985–2990.

    Article  MathSciNet  Google Scholar 

  11. Zeng, C., Liang, S., Zhong, J., and Su, Y., Improvement of the asymptotic properties of zero dynamics for sampled- data systems in the case of a time delay, Abstr. Appl. Anal., 2014, vol. 2014, pp. 1–12.

    MathSciNet  Google Scholar 

  12. Passino, K.M. and Antsaklis, P.J., Inverse stable sampled low-pass systems, Int. J. Control, 1988, vol. 47, pp. 1905–1913.

    Article  MATH  Google Scholar 

  13. Ishitobi, M., Stability of zeros of sampled system with fractional order hold, IEEE Proc. Control Theory Appl., 1996, vol. 143, pp. 296–300.

    Article  MATH  Google Scholar 

  14. Barcena, R., de la Sen, M., and Sagastabeitia, I., Improving the stability properties of the zeros of sampled systems with fractional order hold, IEEE Proc. Control Theory Appl., 2000, vol. 147, no. 4, pp. 456–464.

    Article  Google Scholar 

  15. Barcena, R., de la Sen, M., Sagastabeitia, I., and Collantes, J.M., Discrete control for a computer hard disk by using a fractional order hold device, IEEE Proc. Control Theory Appl., 2001, vol. 148, no. 2, pp. 117–124.

    Article  Google Scholar 

  16. Liang, S., Ishitobi, M., and Zhu, Q., Improvement of stability of zeros in discrete-time multivariable systems using fractional-order hold, Int. J. Control, 2003, vol. 76, pp. 1699–1711.

    Article  MathSciNet  MATH  Google Scholar 

  17. Zeng, C., Liang, S., Zhang, Y., Zhong, J., and Su, Y., Improving the stability of discretization zeros with the Taylor method using a generalization of the fractional-order hold, Int. J. Appl. Math. Comput. Sci., 2014, vol. 24, no. 4, pp. 745–757.

    Article  MathSciNet  MATH  Google Scholar 

  18. Zeng, C., Liang, S., and Su, Y., Improving the asymptotic properties of discrete system zeros in fractional-order hold case, J. Appl. Math., 2013, vol. 2013, pp. 1–17.

    Google Scholar 

  19. Zeng, C. and Liang, S., Zeros dynamics of sampled-data models for nonlinear multivariable systems in fractional- order hold caseI, Appl. Math. Comput., 2014, vol. 246, no. 11, pp. 88–102.

    MathSciNet  MATH  Google Scholar 

  20. B’arcena, R. and de la Sen, M., On the sufficiently small sampling period for the convenient turning of fractional order hold circuits, IEEE Proc. Control Theory Appl., 2003, vol. 150, no. 2, pp. 183–188.

    Article  Google Scholar 

  21. Chan, J.T., On the stabilization of discrete system zeros, Int. J. Control, 1998, vol. 69, no. 6, pp. 789–796.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kabamba, P.T., Control of linear systems using generalized sampled data hold functions, IEEE Trans. Autom. Control, 1987, vol. AC-32, no. 7, pp. 772–783.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chan, J.T., Stabilization of discrete system zeros: A improved design, Int. J. Control, 2002, vol. 75, no. 10, pp. 759–765.

    Article  MathSciNet  MATH  Google Scholar 

  24. Liang, S. and Ishitobi, M., Properties of zeros of discretised system using multirate input and hold, IEEE Proc. Control Theory Appl., 2004, vol. 151, pp. 180–184.

    Article  Google Scholar 

  25. Yuz, J.I., Goodwin, G.C., and Garnier, H., Generalized hold functions for fast sampling rates, 43rd IEEE Conference on Decision and Control (CDC’2004), Atlantis, Bahamas, 2004, pp. 761–765.

    Google Scholar 

  26. Ugalde, U., B`arcena, R., and Basterretxea, K., Generalized sampled-data hold functions with asymptotic zeroorder hold behavior and polynomic reconstruction, Automatica, 2012, vol. 48, no. 6, pp. 1171–1176.

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, S., Xian, X., Ishitobi, M., and Xie, K., Stability of zeros of discrete time multivariable systems with GSHF, Int. J. Innovative Comput. Inf. Control, 2010, vol. 6, pp. 2917–2926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zeng.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Su, Y. & Liang, S. A sufficient and necessary condition for stabilization of zeros in discrete-time multirate sampled systems. Aut. Control Comp. Sci. 51, 42–49 (2017). https://doi.org/10.3103/S0146411617010084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411617010084

Keywords

Navigation