Skip to main content
Log in

Research on adaptive sliding synchronization of Rikitake chaotic system with single unknown control coefficient

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The control of second order system with uncertain parameters and single unknown control coefficient was investigated to solve the synchronization problem of Rikitake chaotic with reduced number of active inputs. In addition, a kind of adaptive strategy was hybrid with sliding mode method, where the adaptive strategy was used to cope with uncertain parameters produced in the process of sliding mode controller design. At last, detailed numerical simulations with both second order systems and synchronous chaotic system were done to testify the rightness of the proposed method and also multi-time random simulations were done to testify the robustness of the controller. In addition, the main conclusion is that the sliding mode control has very good consistency since the strategy formation is almost the same as the controller for system with known control coefficient, and high gain is necessary for system with single uncertain control coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, X., Zhang, J., and Yang, Y., Synchronizing chaotic systems using backstepping design, Chaos Solitons Fractals, 2003, vol. 16, pp. 37–45.

    Article  MathSciNet  MATH  Google Scholar 

  2. Li, Z.G., Wen, C.Y., Soh, Y.C., and Xie, W.X., The stabilization and synchronization of Chuas oscillators via impulsive control, IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl., 2002, vol. 48, pp. 1351–1355.

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang, T. and Chua, L.O., Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Syst. I: Fundam. Theor. Appl., 1997, vol. 44, pp. 976–988.

    Article  MathSciNet  Google Scholar 

  4. Yan, J.J., Lin, J.S., and Liao, T.L., Synchronization of a modified Chua’s circuit system via adaptive sliding mode control, Chaos Solitons Fractals, 2008, vol. 36, pp. 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, S.H. and Pei, L.J., Chaotic synchronization of Chua’s circuits with nonlinear control, Acta Phys. Sin., 2010, vol. 59, pp. 5985–5989.

    MATH  Google Scholar 

  6. Zhang, T. and Feng, G., Output tracking and synchronization of chaotic Chua’s circuit with disturbances via model predictive regulator, Chaos Solitons Fractals, 2009, vol. 39, pp. 810–820.

    Article  Google Scholar 

  7. Suykens, J.A.K., Curran, P.F., Vandewalle, J., and Chua, L.O., Robust synthesis for master-slave synchronization of Lur’e systems, IEEE Trans. Circuits Syst. I Fundam. Theor. Appl., 1999, vol. 46, pp. 841–850.

    Article  MATH  Google Scholar 

  8. Cao, J., Li, H.X., and Ho, D.W.C., Synchronization criteria of Lur’e systems with time-delay feedback control, Chaos Solitons Fractals, 2005, vol. 23, pp. 1285–1298.

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, Q.L., On designing time-varying delay feedback controllers for master-slave synchronization of Lur’e systems, IEEE Trans. Circuits Syst. I: Reg. Pap., 2007, vol. 54, pp. 1573–1583.

    Article  MATH  Google Scholar 

  10. Lu, J.L. and Hill, D.J., Global asymptotical synchronization of chaotic Lur’e systems using sampled data: A linear matrix inequality approach, IEEE Trans. Circuits Syst. II: Express Briefs, 2008, vol. 55, pp. 586–590.

    Google Scholar 

  11. Zhang, C.K., He, Y., and Wu, M., Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control, IEEE Trans. Circuits Syst. II: Express Briefs, 2009, vol. 56, pp. 320–324.

    Article  Google Scholar 

  12. Zhang, T. and Feng, G., Output tracking of piecewise-linear systems via error feedback regulator with application to synchronization of nonlinear Chua’s circuit, IEEE Trans. Circuits Syst. I, 2007, vol. 54, pp. 1852–1863.

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, A.C.J., Singularity and Dynamics on Discontinuous Vector Fields, Amsterdam: Elsevier, 2006.

    MATH  Google Scholar 

  14. Jason, J.G., Kathryn, W.J., et al., A simplified adaptive robust back-stepping approach using sliding modes and a z-swapping identifier, Proceedings of the American Control Conference, Denver, 2003.

    Google Scholar 

  15. Zhou, Y., Wu, Y., and Hu, Y., Robust backstepping sliding mode control of a class of uncertain MIMO nonlinear systems, 2007 IEEE International Conference on Control and Automation, Guangzhou, 2007.

    Google Scholar 

  16. Lee, T. and Kim, Y., Nonlinear adaptive flight control using back-stepping and neural networks controller, J. Guid. Control Dyn., 2001, vol. 24, no. 4, pp. 675–682.

    Article  Google Scholar 

  17. Zhu Kai, Qi Naiming, and Qin Changmao, Adaptive sliding mode controller design for BTT missile based on back-stepping control, J. Astronaut., 2010, vol. 31, no. 3, pp. 769–773.

    Google Scholar 

  18. Chen, Y., Dong, C.Y., Wang, Q., et al., Reaction-jet and aerodynamics compound control missile autopilot design based on adaptive fuzzy sliding mode control via backstepping, Acta Aeronaut. Astronaut. Sin., 2007, vol. 28, pp. 1141–1145.

    Google Scholar 

  19. Jay, F., Manu, S., and Marios, P., Backstepping based flight control with adaptive function approximation, J. Guid. Control Dyn., 2007, vol. 30, no. 2, pp. 322–336.

    Article  Google Scholar 

  20. Tsung-Ying Chiang, Jui-Sheng Lin, Teh-Lu Liao, and Jun-Juh Yan, Antisynchronization of uncertain unified chaotic systems with dead-zone nonlinearity, Nonlinear Anal., 2008, vol. 68, pp. 2629–2637.

    Article  MathSciNet  MATH  Google Scholar 

  21. May, R.M., Simple mathematical models with very complicated dynamics, Nature, 1976, vol. 261, pp. 459–462.

    Article  MATH  Google Scholar 

  22. Feigenbaum, M.J., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 1978, vol. 19, pp. 25–52.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pecora, L.M. and Carroll, T.L., Synchronization in chaotic systems, Phys. Rev. Lett., 1990, vol. 64, pp. 821–824.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ge, S.S., Wang, C., and Lee, T.H., Adaptive backstepping control of a class of chaotic systems, Int. J. Bifurcation Chaos, 2000, vol. 10, no. 5, pp. 1140–1156.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ge, S.S. and Wang, C., Adaptive control of uncertain Chua’s circuits, IEEE Trans. Circuits Syst., 2000, vol. 47, no. 9, pp. 1397–1402.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fradkov, A.L. and Markov, A.Yu., Adaptive synchronization of chaotic systems based on speed gradient method and pacification, IEEE Trans. Circuits Syst., 1997, vol. 44, no. 10, pp. 905–912.

    Article  Google Scholar 

  27. Dong, X. and Chen, L., Adaptive control of the uncertain Duffing oscillator, Int. J. Bifurcation Chaos, 1997, vol. 7, no. 7, pp. 1651–1658.

    Article  MathSciNet  MATH  Google Scholar 

  28. Tao Yang, Chun-Mei Yang, and Lin-Bao Yang, A detailed study of adaptive control of chaotic systems with unknown parameters, Dyn. Control, 1998, vol. 8, pp. 255–267.

    Article  MathSciNet  MATH  Google Scholar 

  29. Yassen, M.T., Chaos control of chaotic dynamical systems using backstepping design, Chaos Solitons Fractals, 2006, vol. 27, pp. 537–548.

    Article  MathSciNet  MATH  Google Scholar 

  30. Fengxiang Chen, Lin Chen, and Weidong Zhang, Stabilization of parameters perturbation chaotic system via adaptive backstepping technique, Appl. Math. Comput., 2008, vol. 200, pp. 101–109.

    MathSciNet  MATH  Google Scholar 

  31. Yassen, M.T., Adaptive chaos control and synchronization for uncertain new chaotic dynamical system, Phys. Lett. A, 2006, vol. 350, pp. 36–43.

    Article  MATH  Google Scholar 

  32. Jianping Yan and Changpin Li, On synchronization of three chaotic systems, Chaos Solitons Fractals, 2005, vol. 23, pp. 1683–1688.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youan Zhang.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, H., Liu, J. et al. Research on adaptive sliding synchronization of Rikitake chaotic system with single unknown control coefficient. Aut. Control Comp. Sci. 51, 311–320 (2017). https://doi.org/10.3103/S0146411617050091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411617050091

Keywords

Navigation