Skip to main content
Log in

3D Deep Learning for Automatic Brain MR Tumor Segmentation with T-Spline Intensity Inhomogeneity Correction

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Automatic segmentation of brain tumor data is a herculean task for medical applications, particularly in cancer diagnosis. This paper emulates some challenging issues such as noise sensitivity, partial volume averaging, intensity inhomogeneity, inter-slice intensity variations, and intensity non-standardization. This paper intends a novel N3T-spline intensity inhomogeneity correction for bias field correction and the three dimension convolutional neural network (3DCNN) for automatic segmentation. The proposed work consists of four stages (i) pre-processing, (ii) feature extraction (iii) automatic segmentation and (iv) post-processing. In the pre-processing step, novel nonparametric non-uniformity normalization (N3) based T-spline approach is proposed to correct the bias field distortion, which recedes the noises and intensity variations. The extended gray level co-occurrence matrix (EGLCM) is a feature extraction technique, from which the texture patches more suitable for brain tumor segmentation can be extracted. The proposed 3DCNN automatically segments the brain tumor and divides the discrete abnormal tissues from the raw data and EGLCM features. Finally, a simple threshold scheme is adapted on the segmented result to correct the false labels and eliminate the 3D connected small regions. The simulation results in the proposed segmentation procedure could acquire competitive performance as compared with the existing procedure for the BRATS 2015 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Balafar, M.A., Ramli, A.R., Saripan, M.I., and Mashohor, S., Review of brain MRI image segmentation methods, Artif. Intell. Rev., 2010, vol. 33, no. 3, pp. 261–274.

    Article  Google Scholar 

  2. Khotanlou, H., Colliot, O., Atif, J., and Bloch, I., 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models, Fuzzy Sets Syst., 2009, vol. 160, no. 10, pp. 1457–1473.

    Article  MathSciNet  Google Scholar 

  3. Ahmed, N.M., Yamany, S.M., Mohamed, N., Farag, A.A., and Moriarty, T., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imaging, 2002, vol. 21, no. 3, pp. 193–199.

    Article  Google Scholar 

  4. Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., and Zhu, Y., Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation, Comput. Vision Image Understanding, 2011, vol. 115, no. 2, pp. 256–269.

    Article  Google Scholar 

  5. Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., and Bezdek, J.C., A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Networks, 1992, vol. 3, no. 5, pp. 672–682.

    Article  Google Scholar 

  6. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al., The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, 2015, vol. 34, no. 10, pp. 1993–2024.

    Article  Google Scholar 

  7. Shen, S., Sandham, W., Granat, M., and Sterr, A., MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization, IEEE Trans. Inf. Technol. Biomed., 2005, vol. 9, no. 3, pp. 459–467.

    Article  Google Scholar 

  8. Dou, W., Ruan, S., Chen, Y., Bloyet, D., and Constans, J.M., A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images, Image Vision Comput., 2007, vol. 25, no. 2, pp. 164–171.

    Article  Google Scholar 

  9. Ho, S., Bullitt, E., and Gerig, G., Level-set evolution with region competition: Automatic 3-D segmentation of brain tumors, Pattern Recognition, 2002. Proceedings. 16th International Conference, 2002, vol. 1, pp. 532–535.

  10. Gordillo, N., Montseny, E., and Sobrevilla, P., State of the art survey on MRI brain tumor segmentation, Magn. Reson. Imaging, 2013, vol. 31, no. 8, pp. 1426–1438.

    Article  Google Scholar 

  11. Prastawa, M., Bullitt, E., Ho, S., and Gerig, G., A brain tumor segmentation framework based on outlier detection, Med. Image Anal., 2004, vol. 8, no. 3, pp. 275–283.

    Article  Google Scholar 

  12. Kapur, T., Grimson, W.E., Wells, W.M., and Kikinis, R., Segmentation of brain tissue from magnetic resonance images, Med. Image Anal., 1996, vol. 1, no. 2, pp. 109–127.

    Article  Google Scholar 

  13. Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., and Murtagh, F.R., Automatic segmentation of non-enhancing brain tumors in magnetic resonance images, Artif. Intell. Med., 2001, vol. 21, no. 1, pp. 43–63.

    Article  Google Scholar 

  14. Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., and Gerig, G., Automatic brain tumor segmentation by subject specific modification of atlas priors, Acad. Radiol., 2003, vol. 10, no. 12, pp. 1341–1348.

    Article  Google Scholar 

  15. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., and Wagner, H., Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation, Int. J. Radiat. Oncol. Biol. Phys., 2004, vol. 59, no. 1, pp. 300–312.

    Article  Google Scholar 

  16. Pereira, S., Pinto, A., Alves, V., and Silva, C.A., Brain tumor segmentation using convolutional neural networks in MRI images, IEEE Trans. Med. Imaging, 2016, vol. 35, no. 5, pp. 1240–1251.

    Article  Google Scholar 

  17. Xie, K., Yang, J., Zhang, Z.G., and Zhu, Y.M., Semi-automated brain tumor and edema segmentation using MRI, Eur. J. Radiol., 2005, vol. 56, no. 1, pp. 12–19.

    Article  Google Scholar 

  18. Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R., Haker, S.J., Wells, W.M., Jolesz, F.A., and Kikinis, R., Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports, Acad. Radiol., 2004, vol. 11, no. 2, pp. 178–189.

    Article  Google Scholar 

  19. Kaus, M., Warfield, S.K., Jolesz, F.A., and Kikinis, R., Adaptive template moderated brain tumor segmentation in MRI, in Bildverarbeitung für die Medizin, 1999, pp. 102–106.

  20. Clarke, L.P., Velthuizen, R.P., Clark, M., Gaviria, J., Hall, L., Goldgof, D., Murtagh, R., Phuphanich, S., and Brem, S., MRI measurement of brain tumor response: Comparison of visual metric and automatic segmentation, Magn. Reson. Imaging, 1998, vol. 16, no. 3, pp. 271–279.

    Article  Google Scholar 

  21. Phillips, W.E., Velthuizen, R.P., Phuphanich, S., Hall, L.O., Clarke, L.P., and Silbiger, M.L., Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme, Magn. Reson. Imaging, 1995, vol. 13, no. 2, pp. 277–290.

    Article  Google Scholar 

  22. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., and Cuadra, M.B., A review of atlas-based segmentation for magnetic resonance brain images, Comput. Methods Programs Biomed., 2011, vol. 104, no. 3, pp. 158–177.

    Article  Google Scholar 

  23. Prastawa, M., Bullitt, E., and Gerig, G., Simulation of brain tumors in MR images for evaluation of segmentation efficacy, Med. Image Anal., 2009, vol. 13, no. 2, pp. 297–311.

    Article  Google Scholar 

  24. Ahmed, S., Iftekharuddin, K.M., and Vossough, A., Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI, IEEE Trans. Inf. Technol. Biomed., 2011, vol. 15, no. 2, pp. 206–213.

    Article  Google Scholar 

  25. Vaidyanathan, M., Clarke, L.P., Hall, L.O., Heidtman, C., Velthuizen, R., Gosche, K., Phuphanich, S., Wagner, H., Greenberg, H., and Silbiger, M.L., Monitoring brain tumor response to therapy using MRI segmentation, Magn. Reson. Imaging, 1997, vol. 15, no. 3, pp. 323–334.

    Article  Google Scholar 

  26. Kwon, D., Shinohara, R.T., Akbari, H., and Davatzikos, C., Combining generative models for multifocal glioma segmentation and registration, Medical Image Computing and Comput.-Assisted Intervention-MICCAI 2014, New York, 2014, pp. 763–770.

  27. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., and Lanczi, L., The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging, 2015, vol. 34, no. 10, pp. 1993–2024.

    Article  Google Scholar 

  28. Urban, G., Bendszus, M., Hamprecht, F., and Kleesiek, J., Multi-modal brain tumor segmentation using deep convolutional neural networks, MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS), 2014, pp. 1–15.

  29. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., and Larochelle, H., Brain tumor segmentation with deep neural net-works 2015. http://arxiv.org/abs/1505.03540, ArXiv:1505.03540v.

  30. Ma, C., Luo, G., and Wang, K., Concatenated and connected random forests with multiscale patch driven active contour model for automated brain tumor segmentation of MR images, IEEE Trans. Med. Imaging, 2018, vol. 37, no. 8, pp. 1943–1954.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Anand Kumar or P. V. Sridevi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand Kumar, G., Sridevi, P.V. 3D Deep Learning for Automatic Brain MR Tumor Segmentation with T-Spline Intensity Inhomogeneity Correction. Aut. Control Comp. Sci. 52, 439–450 (2018). https://doi.org/10.3103/S0146411618050048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618050048

Keywords:

Navigation