Skip to main content
Log in

Approaches to Modeling the Security of Cyberphysical Systems

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This paper considers features of cyberphysical systems (CPSs) as complexes combining physical and information components. Approaches to modeling CPSs based on graphs and stochastic dynamics are analyzed. Common features and further directions in CPS modeling are identified. The development direction of the homeostasis-based CPS information security modeling is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yastreb, N.A., The Fourth Industrial Revolution: Global industrial networks and the Internet of Things, Innovatsion. Vestn. Reg., 2014, no. 4, pp. 22–26.

  2. Threats for The Future: Be Are Ready. Special Report on Strategies to Deal with Complex Threats. https://media.kaspersky.com/pdf/APT_Report_ONLINE_AW_rus.pdf.

  3. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., and Felten, E.W., Lest we remember: Cold boot attacks on encryption keys, Proceedings of the 17th USENIX Security Symposium, 2008, pp. 45–60. https://www.usenix.org/events/sec08/tech/full_papers/ halderman/halderman.pdf.

  4. Lamport, L., Proving the correctness of multiprocess programs, IEEE Trans. Software Eng., 1977, vol. 3, no. 2, pp. 125–143. doi 10.1109/TSE.1977.229904

    Article  MathSciNet  MATH  Google Scholar 

  5. Schneider, F.B., Enforceable security policies, ACM Trans. Inf. Syst. Secur., 2000, vol. 3, no. 1, pp. 30–50. doi 10.1145/353323.353382

    Article  Google Scholar 

  6. Mulligan, D.K. and Schneider, F.B., Doctrine for cybersecurity, Daedalus, 2011, vol. 140, no. 4, pp. 70–92.

    Article  Google Scholar 

  7. Ashibani, Y. and Mahmoud, Q.H., Cyber physical systems security: Analysis, challenges and solutions, Comput. Secur., 2017, vol. 68, pp. 81–97.

    Article  Google Scholar 

  8. Zanero, S., Cyber-physical systems, Computer, 2017, vol. 50, no. 4, pp. 14–16.

    Article  Google Scholar 

  9. Zegzhda, D.P., Sustainability as a criterion for information security in cyber-physical systems, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 813–819.

    Article  Google Scholar 

  10. Dat Dac Hoang, Hye-Young Paik, and Chae-Kyu Kim, Service-oriented middleware architectures for cyber-physical systems, Int. J. Comput. Sci. Network Secur., 2012, vol. 12, no. 1, pp. 79–87.

  11. Seiger, R., Huber, S., Heisig, P., and Assmann, U., Enabling self-adaptive workflows for cyber-physical systems, Lect. Notes Bus. Inf. Process., 2016, vol. 248, pp. 3–17.

    Article  Google Scholar 

  12. Zegzhda, P.D., Zegzhda, D.P., and Stepanova, T.V., Approach to the construction of the generalized functional-semantic cyber security model, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 627–633.

    Article  Google Scholar 

  13. Zegzhda, P.D., Zegzhda, D.P., Pechenkin, A.I., and Poltavtseva, M.A., Modeling information systems for solving security control problems, Probl. Inf. Bezop., Komp’yut. Sist., 2016, no. 3, pp. 7–16.

  14. Lavrova, D.S., An approach to developing the SIEM system for the Internet of Things, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 673–681.

    Article  Google Scholar 

  15. Trenogin, N.G. and Sokolov, D.E., Fractal properties of network traffic in a client-server information system, Materialy Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii Informatika i problemy telekommunikatsii (Proc. Int. Sci.-Tech. Conf. Informatics and Problems of Telecommunications), Novosibirsk: Sib. Gos. Univ. Telekommun. Inf., 2001, pp. 34–35.

  16. Nicolis, J.S., Dynamics of Hierarchical Systems: An Evolutionary Approach, Springer, 1986.

    Book  MATH  Google Scholar 

  17. Pozdnyak, I.S. and Buranova, M.A., Metodicheskie ukazaniya Issledovanie setevogo trafika na stepen' samopodobiya (Methodical Instructions: Study of Network Traffic for the Degree of Self-Similarity), Samara: Povolzh. Gos. Univ. Telekommun. Inf., 2013.

  18. Zegzhda, D.P. and Stepanova, T.V., Applying large-scale adaptive graphs to modeling Internet of Things security, Proceedings of the 7th International Conference on Security of Information and Networks, SIN 2014, 2014, pp. 479–482.

  19. Bekish, O.-Ya.L., Meditsinskaya biologiya (Medical Biology), Minsk: Uradzhai, 2000.

  20. Gerostathopoulos, I., Skoda, D., Plasil, F., Bures, T., and Knauss, A., Architectural homeostasis in self-adaptive software-intensive cyber-physical systems, Lect. Notes Comput. Sci., 2016, vol. 9839, pp. 113–128.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. P. Zegzhda or M. A. Poltavtseva.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegzhda, D.P., Vasil’ev, Y.S. & Poltavtseva, M.A. Approaches to Modeling the Security of Cyberphysical Systems. Aut. Control Comp. Sci. 52, 1000–1009 (2018). https://doi.org/10.3103/S014641161808031X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014641161808031X

Keywords:

Navigation