Skip to main content
Log in

Using Codes with Summation of Weighted Bits to Organize Checking of Combinational Logical Devices

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This article analyzes the peculiarities of applying weighted sum codes in tasks of building logical device check circuits for weighing of bits via random weighting coefficients, with check bits limited in number by the number of check bits of classical Berger codes. Important regularities typical of weighted sum codes are discovered. Weighted codes belong to codes that detect unidirectional errors (UED codes). The presented technique of synthesizing weighted sum codes allows creating the simplest structures of these devices based on the standard circuits of full adders and half adders of units. The main properties of weighted sum codes via error detection in information vectors and in outputs of combinational check circuits are confirmed via experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Fujiwara, E., Code Design for Dependable Systems: Theory and Practical Applications, John Wiley & Sons, 2006.

    Book  MATH  Google Scholar 

  2. Ubar, R., Raik, J., and Vierhaus, H.-T., Design and Test Technology for Dependable Systems-on-Chip (Premier Reference Source), New York: IGI Global, 2011.

    Book  Google Scholar 

  3. Drozd, A.V., Kharchenko, V.S., Antoshchuk, S.G., Drozd, Yu.V., Drozd, M.A., and Sulima, Yu.Yu., in Rabochee diagnostirovanie bezopasnykh informatsionno-upravlyayushchikh sistem (Objects and Methods of On-Line Testing for Safe Instrumentation and Control Systems), Drozd, A.V. and Kharchenko, V.S., Eds., Kharkiv: Nats. Aerokosm. Univ. im. N.E. Zhukovskogo “KhAI,” 2012.

  4. Sogomonyan, E.S. and Slabakov, E.V., Samoproveryaemye ustroistva i otkazoustoichivye sistemy (Self-Checking Devices and Fault-Tolerant Systems), Moscow: Radio i svyaz’, 1989.

  5. Sapozhnikov, V.V. and Sapozhnikov, Vl.V., Samoproveryaemye diskretnye ustroistva (Self-Checking Discrete Devices), St. Petersburg: Energoatomizdat, 1992.

    Google Scholar 

  6. Nicolaidis, M., On-line testing for VLSI: State of the art and trends, Integration, 1998, vol. 26, nos. 1–2, pp. 197–209. doi https://doi.org/10.1016/S0167-9260(98)00028-5

    Article  MATH  Google Scholar 

  7. Mitra, S. and McCluskey, E.J., Which concurrent error detection scheme to choose?, Proceedings of International Test Conference, Atlantic City, NJ, 2000, pp. 985–994. doi https://doi.org/10.1109/TEST.2000.894311

  8. Piestrak, S.J., Design of Self-Testing Checkers for Unidirectional Error Detecting Codes, Wrocław: Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995.

    Google Scholar 

  9. Freiman, C.V., Optimal error detection codes for completely asymmetric binary channels, Inf. Control, 1962, vol. 5, no. 1, pp. 64-71. doi https://doi.org/10.1016/S0019-9958(62)90223-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Berger, J.M., A note on error detection codes for asymmetric channels, Inf. Control, 1961, vol. 4, no. 1, pp. 68–73. doi https://doi.org/10.1016/S0019-9958(61)80037-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Saposhnikov, V.V., Morosov, A., Saposhnikov, Vl.V., and Göessel, M., A new design method for self-checking unidirectional combinational circuits, J. Electron. Test.: Theory Appl., 1998, vol, 12, nos. 1–2, pp. 41–53. doi https://doi.org/10.1023/A:1008257118423

    Article  Google Scholar 

  12. Matrosova, A.Yu., Levin, I., and Ostanin, S.A., Self-checking synchronous FSM network design with low overhead, VLSI Des., 2000, vol. 11, no. 1, pp. 47–58. doi https://doi.org/10.1155/2000/46578

    Article  Google Scholar 

  13. Göessel, M., Ocheretny, V., Sogomonyan, E., and Marienfeld, D., New Methods of Concurrent Checking, Dordrecht: Springer Science+Business Media B.V, 2008.

  14. Matrosova, A.Yu., Ostanin, S.A., and Singh, V., Detection of false paths in logical circuits by joint analysis of the AND/OR trees and SSBDD-graphs, Autom. Remote Control, 2013, vol. 74, no. 7, pp. 1164–1177.

    Article  MATH  Google Scholar 

  15. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Conditions for detecting a logical element fault in a combination device under concurrent checking based on Berger’s code, Autom. Remote Control, 2017, vol. 78, no. 5, pp. 891–901.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ostanin, S., Self-checking synchronous FSM network design for path delay faults, Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS'2017), Novi Sad, Serbia, 2007, 2017, pp. 696–699. doi https://doi.org/10.1109/EWDTS.2017.8110129

  17. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Applications of modular summation codes to concurrent error detection systems for combinational Boolean circuits, Autom. Remote Control, 2015, vol. 76, no. 10, pp. 1834–1848.

    Article  MathSciNet  MATH  Google Scholar 

  18. Efanov, D., Sapozhnikov, V., Sapozhnikov, Vl., and Nikitin, D., Sum code formation with minimum total number of undetectable errors in data vectors, Proceedings of 13th IEEE East-West Design & Test Symposium (EWDTS’2015), Batumi, 2015, pp. 141–148. doi https://doi.org/10.1109/EWDTS.2015.7493112

  19. Berger, J.M., A note on burst detection sum codes, Inf. Control, 1961, vol. 4, nos. 2–3, pp. 297–299. doi https://doi.org/10.1016/S0019-9958(61)80024-7

    Article  Google Scholar 

  20. Das, D. and Touba, N.A., Weight-based codes and their application to concurrent error detection of multilevel circuits, Proceedings of the 17th IEEE VLSI Test Symposium, Dana Point, CA, 1999, pp. 370–376.

  21. Sapozhnikov, V., Sapozhnikov, Vl., Efanov, D., and Nikitin, D., Combinational circuits checking on the base of sum codes with one weighted data bit, Proceedings of 12th IEEE East-West Design & Test Symposium (EWDTS’2014), Kyev, 2014, pp. 126–136. doi https://doi.org/10.1109/EWDTS.2014.7027064

  22. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Weighted codes with summation for organizing the control of logic devices, Elektron. Model., 2014, vol. 36, no. 1, pp. 59–80.

    Google Scholar 

  23. Sapozhnikov, V.V., Sapozhnikov, Vl.V., and Efanov, D.V., Classification of errors in the information vectors of systematic codes, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2015, vol. 58, no. 5, pp. 333–343. doi https://doi.org/10.17586/0021-3454-2015-58-5-333-343

    Google Scholar 

  24. Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., On summation code properties in functional control circuits, Autom. Remote Control, 2010, vol. 71, no. 6, pp. 1117–1123.

    Article  MathSciNet  MATH  Google Scholar 

  25. Blyudov, A.A., Efanov, D.V., Sapozhnikov, V.V., and Sapozhnikov, Vl.V., Building a modified Berger code with a minimum number of undetectable errors of information bits, Elektron. Model., 2012, vol. 34, no. 6, pp. 17–29.

    Google Scholar 

  26. Kang, M., A study of self-checking circuit design based on Berger code, Master’s Dissertation, Harbin Engineering University, 2007.

  27. Collection of Digital Design Benchmarks. http://ddd.fit.cvut.cz/prj/Benchmarks/. Accessed March 15, 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Efanov or Vl. V. Sapozhnikov.

Additional information

Translated by S. Kuznetsov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efanov, D.V., Sapozhnikov, V.V. & Sapozhnikov, V.V. Using Codes with Summation of Weighted Bits to Organize Checking of Combinational Logical Devices. Aut. Control Comp. Sci. 53, 1–11 (2019). https://doi.org/10.3103/S0146411619010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411619010061

Keywords:

Navigation