Skip to main content
Log in

Ensuring the Information Security of Wireless Dynamic Networks Based on the Game-Theoretic Approach

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The concept of applying the game-theoretic approach in wireless dynamic network infrastructure to counteract cyber-attacks is presented. This approach can enable an adaptive reconfiguration of the network structure as various types of cyber-attacks occur and ensure continuous network functioning even in the case of destructive information impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vasiliev, Y.S., Zegzhda, P.D., and Kuvshinov, V.I., Modern problems of cybersecurity, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2014, vol. 17, no. 3, pp. 210–214.

  2. Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., and Suprun, A.F., The problem of innovative development of information security systems in the transport sector, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1105–1110.

    Article  Google Scholar 

  3. Kalinin, M., Krundyshev, V., Zegzhda, P., and Belenko, V., Network security architectures for VANET, ACM International Conference Proceeding Series, 2017, pp. 73–79.

  4. Demidov, R.A., Zegzhda, P.D., and Kalinin, M.O., Threat analysis of cyber security in wireless adhoc networks using hybrid neural network model, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 971–976.

    Article  Google Scholar 

  5. Kalinin, M., Zegzhda, P., Zegzhda, D., Vasiliev, Y., and Belenko, V., Software defined security for vehicular ad hoc networks, 2016 International Conference on Information and Communication Technology Convergence, ICTC, 2016, pp. 533–537.

  6. Kalinin, M.O., Krundyshev, V.M., Rezedinova, E.Y., and Reshetov, D.V., Hierarchical software-defined security management for large-scale dynamic networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 906–911.

    Article  Google Scholar 

  7. Kalinin, M.O. and Minin, A.A., Security evaluation of a wireless ad-hoc network with dynamic topology, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 899–901.

    Article  Google Scholar 

  8. Zegzhda, P.D., Ivanov, D.V., Moskvin, D.A., and Kubrin, G.S., Actual security threats for vehicular and mobile ad hoc networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 993–999.

    Article  Google Scholar 

  9. Zegzhda, D.P., Zegzhda, P.D., and Kalinin, M.O., Clarifying integrity control at the trusted information environment, Lect. Notes Comput. Sci., 2010, vol. 6258, pp. 337–344.

    Article  Google Scholar 

  10. Kalinin, M.O., Permanent protection of information systems with method of automated security and integrity control, SIN'10: Proceedings of the 3rd International Conference of Security of Information and Networks, 2010, pp. 118–123. https://doi.org/10.1145/1854099.1854125

  11. Dakhnovich, A., Moskvin, D., and Zeghzda, D., An approach for providing industrial control system sustainability in the age of digital transformation, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 497, no. 1. https://doi.org/10.1088/1757-899X/497/1/012006

  12. Pavlenko, E. and Zegzhda, D., Sustainability of cyber-physical systems in the context of targeted destructive influences, 2018 IEEE Industrial Cyber-Physical Systems, ICPS, 2018, pp. 830–834.

    Google Scholar 

  13. Zegzhda, D.P. and Pavlenko, E.Y., Digital manufacturing security indicators, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1150–1159.

    Article  Google Scholar 

  14. Zegzhda, P.D. and Kalinin, M.O., Automatic security management of computer systems, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 665–672.

    Article  Google Scholar 

  15. Zegzhda, D.P. and Pavlenko, E.Y., Cyber-sustainability of software-defined networks based on situational management, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 984–992.

    Article  Google Scholar 

  16. Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Criterion of cyber-physical systems sustainability, CEUR Workshop Proc., 2019, vol. 2603, pp. 60–64.

    Google Scholar 

  17. Pavlenko, E., Zegzhda, D., and Poltavtseva, M., Ensuring the sustainability of cyberphysical systems based on dynamic reconfiguration, IEEE International Conference on Industrial Cyber Physical Systems, ICPS, 2019, pp. 785–789. https://doi.org/10.1109/ICPHYS.2019.8780193

  18. Minin, A. and Kalinin, M., Information security in computer networks with dynamic topology, ACM International Conference Proceeding Series, 2015. https://doi.org/10.1145/2799979.2800023

  19. Demidov, R.A., Zegzhda, P.D., and Kalinin, M.O., Threat analysis of cyber security in wireless adhoc networks using hybrid neural network model, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 971–976.

    Article  Google Scholar 

  20. Kalinin, M., Demidov, R., and Zegzhda, P., Hybrid neural network model for protection of dynamic cyber infrastructure, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 375–382.

  21. Pavlenko, E., Zegzhda, D., and Shtyrkina, A., Estimating the sustainability of cyber-physical systems based on spectral graph theory, 2019 IEEE International Black Sea Conference on Communications and Networking, BlackSeaCom, 2019. https://doi.org/10.1109/BlackSeaCom.2019.8812826

  22. Burns, T., Roszkowska, E., Corte, U., and Machado des Johansson, N., Sociological game theory: Agency, social structures and interaction processes, Optimum, Stud. Ekon., 2017, pp. 187–199.

  23. Mas-Collel, A., Whinston, M.D., and Green, J.R., Microeconomic Theory, New York: Oxford Univ. Press, 1997.

    MATH  Google Scholar 

  24. Ashkenazi, V.O., Primenenie teorii igr v voennom dele (Application of Game Theory in Military Affairs), Moscow: Sov. Radio, 1961.

  25. Teoriya igr v upravlenii organizatsionnymi sistemami (Game Theory in Management of Organizational Systems), Gubko, M.V. and Novikov, D.A., Eds., Moscow: Sinteg, 2002.

    Google Scholar 

  26. Roberts, F.S., Discrete Mathematical Models, with Applications to Social, Biological, and Environmental Problems, Prentice-Hall, 1976.

    MATH  Google Scholar 

  27. Owen, G., Game Theory, Academic Press, 1968.

    MATH  Google Scholar 

  28. Dutta, B. and Mutuswami, S., Stable networks, J. Econ. Theory, 1997, vol. 76, pp. 322–344.

    Article  MathSciNet  Google Scholar 

  29. Giocoli, N., Nash equilibrium, History Polit. Econ., 2004, vol. 36, no. 4.

  30. Myerson, R.B., Game Theory: Analysis of Conflict, London: Harvard Univ. Press, 1991.

    MATH  Google Scholar 

  31. Kalinin, M., Zegzhda, P., Zegzhda, D., Vasiliev, Y., and Belenko, V., Software defined security for vehicular ad hoc networks, 2016 International Conference on Information and Communication Technology Convergence, ICTC, 2016, pp. 533–537. https://doi.org/10.1109/ICTC.2016.7763528

  32. Kalinin, M.O., Krundyshev, V.M., Rezedinova, E.Y., and Reshetov, D.V., Hierarchical software-defined security management for large-scale dynamic networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 906–911.

    Article  Google Scholar 

  33. Kalinin, M.O. and Pavlenko, E.Y., Increasing the fault tolerance and availability of software defined networks using network equipment control based on multiobjective optimization by service quality parameters, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 673–678.

    Article  Google Scholar 

  34. Kalinin, M.O., Krundyshev, V.M., and Semianov, P.V., Architectures for building secure vehicular networks based on SDN technology, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 907–914.

    Article  Google Scholar 

  35. Mekhanizmy funktsionirovaniya organizatsionnykh sistem (Mechanisms of Functioning of Organizational Systems), Burkov, V.N. and Kondrat’ev, V.V., Eds., Moscow: Nauka, 1981.

  36. Currarini, S. and Morelli, M., Network formation with sequential demands, Rev. Econ. Des., 2000, vol. 5, pp. 229–250.

    Google Scholar 

  37. Germeier, Yu.B., Igry s neprotivopolozhnymi interesami (Non-Antagonistic Games), Moscow: Nauka, 1976.

Download references

Funding

The study was supported by the Russian President’s scholarship for young scientists and postgraduates, project no. SP-1932.2019.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Lavrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Semenova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrova, D.S., Solovei, R.S. Ensuring the Information Security of Wireless Dynamic Networks Based on the Game-Theoretic Approach. Aut. Control Comp. Sci. 54, 937–943 (2020). https://doi.org/10.3103/S0146411620080210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411620080210

Keywords:

Navigation