Skip to main content
Log in

Parameter Estimation and Its Application on Designing Adaptive Nonlinear Model Based Control Schemes for the Time Varying System

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

This work deals with implementation of adaptive nonlinear model-based control (NMBC) scheme on the time varying system. In this approach, only influential model parameter was estimated using well recognized parameter estimation techniques and predicted value of the parameters were used to synthesize the control law. Detailed guidelines on tuning controller parameters were discussed in this paper. In order to demonstrate the practical utility and usefulness of the NMBC control framework, a typical nonlinear industrial process was chosen. The realistic simulations like servo-regulatory compliance, elimination of measurement noise with a state-of-the-art simulator ensures the efficacy of the proposed controller. The performance assessment of the NMBC schemes (computational speed, mean square error (MSE)) were analyzed and compared with the traditional adaptive PI (TA-PI) control strategy. Furthermore, the convergence assessing chart (mean square deviation (MSD)) for different estimators were compared in order to analyze the merits and demerits associated with them. From the extensive simulation studies, robustness features of the aforementioned control schemes have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Boyd, S. and Barratt, B.C., Linear Controller Design: Limits of Performance, Englewood Cliffs, N.J.: Prentice Hall, 1991.

    MATH  Google Scholar 

  2. Bequette, B.W., Practical approaches to nonlinear control, Nonlinear Model Based Process Control, Berber, R. and Kravaris, C., Eds., NATO ASI Series, vol. 353, Dordrecht: Springer, 1998, pp. 3–32. https://doi.org/10.1007/978-94-011-5094-1_1

    Book  Google Scholar 

  3. Syrmos, V.L., Abdallah, C.T., Dorato, P., and Grigoriadis, K., Static output feedback—A survey, Automatica, 1997, vol. 33, no. 2, pp. 125–137. https://doi.org/10.1016/S0005-1098(96)00141-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, Y.-J., Li, D.-J., and Tong, S., Adaptive output feedback control for a class of nonlinear systems with full-state constraints, Int. J. Control, 2014, vol. 87, no. 2, pp. 281–290. https://doi.org/10.1080/00207179.2013.828854

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang, R., Koelewijn, P.J.W., Manchester, I.R., and Tóth, R., Nonlinear parameter-varying state-feedback design for a gyroscope using virtual control contraction metrics, Int. J. Robust Nonlinear Control, 2021, vol. 31, no. 17, pp. 8147–8164.  https://doi.org/10.1002/rnc.5559

    Article  MathSciNet  Google Scholar 

  6. Findeisen, L., Imsland, F., Allgower, F., and Foss, B.A., State and output feedback nonlinear model predictive control: An overview, Eur. J. Control, 2003, vol. 9, nos. 2–3, pp. 190–206. https://doi.org/10.3166/ejc.9.190-206

    Article  MATH  Google Scholar 

  7. Economou, C.G., An operator theory approach to nonlinear controller design, PhD Dissertation, Pasadena, Calif.: California Inst. of Technology, 1985.

  8. Morari, M. and Lee, J.H., Model predictive past, present and future, Comput. Chem. Eng., 1999, nos. 4–5, pp. 667–682. https://doi.org/10.1016/S0098-1354(98)00301-9

  9. Garcia, C., Prett, D., and Morari, M., Model predictive control: theory and practice—A survey, Automatica, 1989, vol. 25, no. 3, pp. 335–348.  https://doi.org/10.1016/0005-1098(89)90002-2

    Article  MATH  Google Scholar 

  10. Qin, S.J. and Badgwell, T., A survey of industrial model predictive control technology, Control Eng. Pract., 2003, vol. 11, no. 7, pp. 733–764.  https://doi.org/10.1016/S0967-0661(02)00186-7

    Article  Google Scholar 

  11. Wang, P., Yang, C., Tian, X., and Huang, D., Adaptive nonlinear model predictive control using an on-line support vector regression updating strategy, Chin. J. Chem. Eng., 2014, vol. 22, no. 7, pp. 774–781.  https://doi.org/10.1016/j.cjche.2014.05.004

    Article  Google Scholar 

  12. Han, H.-G., Zhang, L., Hou, Y., and Qiao, J.-F., Nonlinear model predictive control based on a self-organizing recurrent neural network, IEEE Trans. Neural Networks Learn. Syst., 2016, vol. 27, no. 2, pp. 402–415.  https://doi.org/10.1109/TNNLS.2015.2465174

    Article  MathSciNet  Google Scholar 

  13. Afram, F.J., Janabi-Sharifi, F., Fung, A.S., and Raahemifar, K., Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system, Energy Build., 2017, vol. 141, no. 9, pp. 96–113.  https://doi.org/10.1016/j.enbuild.2017.02.012

    Article  Google Scholar 

  14. Cheng, L., Liu, W., Hou, Z.-G., Huang, T., Yu, J., and Tan, M., An adaptive Takagi–Sugeno fuzzy model-based predictive controller for piezoelectric actuators, IEEE Trans. Ind. Electron., 2017, vol. 64, no. 4, pp. 3048–3058.  https://doi.org/10.1109/TIE.2016.2644603

    Article  Google Scholar 

  15. Kim, T.Y., Kim, B.S., Park, T.C., and Yeo, Y.K., Development of predictive model based control scheme for a molten carbonate fuel cell (MCFC) process, Int. J. Control, Autom. Syst., 2018, vol. 16, pp. 791–803.  https://doi.org/10.1007/s12555-016-0234-0

    Article  Google Scholar 

  16. Tan, K.K., Huang, S., and Ferdous, R., Robust self-tuning PID controller for nonlinear systems, IECON’01. 27th Ann. Conf. of the IEEE Industrial Electronics Society, Denver, 2001, IEEE, 2001, vol. 1, pp. 758–763.  https://doi.org/10.1109/IECON.2001.976710

  17. Evensen, G., The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 2003, vol. 53, pp. 343–367.  https://doi.org/10.1007/s10236-003-0036-9

    Article  Google Scholar 

  18. Kalman Filtering and Neural Networks, Haykin, S., Ed., New York: John Wiley & Sons, 2001.

    Google Scholar 

  19. Reichle, R.H., Walker, J.P., Koster, R.D., and Houser, P.R., Extended versus ensemble Kalman filtering for land data assimilation, J. Hydrometeorol., 2002, vol. 3, no. 6, pp. 728–740.  https://doi.org/10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2

    Article  Google Scholar 

  20. Julier, S.J. and Uhlmann, J.K., Unscented filtering and nonlinear estimation, Proc. IEEE, 2004, vol. 92, no. 3, pp. 401–422.  https://doi.org/10.1109/JPROC.2003.823141

    Article  Google Scholar 

  21. Van der Merwe, R., Wan, E., and Julier, S., Sigma-point Kalman filters for nonlinear estimation and sensor-fusion: Applications to integrated navigation, AIAA Guidance, Navigation, and Control Conf. and Exhibition, Providence, R.I., 2004. https://doi.org/10.2514/6.2004-5120

    Book  Google Scholar 

  22. Refsnes, J.E.G., Nonlinear model-based control of slender body AUVs, PhD Dissertation, Trondheim: Norvegian Univ. of Science and Technology, 2007.

  23. Subbotina, N.N. and Tokmantsev, T.B., Optimal synthesis to inverse problems of dynamics, IFAC Proc. Vol., 2014, vol. 47, no. 3, pp. 5866–5871.  https://doi.org/10.3182/20140824-6-ZA-1003.01174

  24. Wakitani, S., Nakanishi, H., Ashida, Y., and Yamamoto T., IFAC-PapersOnLine, 2018, vol. 51, no. 4, pp. 422–425. https://doi.org/10.1016/j.ifacol.2018.06.131

    Article  Google Scholar 

  25. Arasu, S.K., Panda, A., and Prakash, J., Experimental validation of a nonlinear model based control scheme on the variable area tank process, IFAC-PapersOnLine, 2016, vol. 49, no. 1, pp. 30–34. https://doi.org/10.1016/j.ifacol.2016.03.024

    Article  Google Scholar 

  26. Bhadra, S., Panda, A., Bhowmick, P., Goswami, S., and Panda, R.C., Design and application of nonlinear model-based tracking control schemes employing DEKF estimation, Optim. Control Appl. Methods, 2019, vol. 40, no. 5, pp. 938–960. https://doi.org/10.1002/oca.2526

    Article  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank to the editor and reviewers for suggesting important corrections and modifications that have enriched the quality and contribution of this paper.

Funding

The authors do not have any financial support from any end.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Panda.

Ethics declarations

The authors declare that they have no conflicts of interest.

APPENDIX

APPENDIX

1.1 APPENDIX A. CONTINUOUS-TIME PARAMETER FILTER USING EKF ESTIMATION SCHEME

Initialization of the filter [18, 19]:

$${\mathbf{\hat {\Theta }}}_{0}^{a} = E[{\mathbf{\Theta }}_{0}^{a}],$$
(A.1)
$${{{\mathbf{P}}}_{{{{\Theta }_{0}}}}} = E[({\mathbf{\Theta }}_{0}^{a} - {\mathbf{\hat {\Theta }}}_{0}^{a}){{({\mathbf{\Theta }}_{0}^{a} - {\mathbf{\hat {\Theta }}}_{0}^{a})}^{{\text{T}}}}].$$
(A.2)

Time update equations:

$${{{\mathbf{\hat {\Theta }}}}^{f}}(t) = {{{\mathbf{\hat {\Theta }}}}^{a}}(t - 1),$$
(A.3)
$${\mathbf{P}}_{\Theta }^{f}(t) = {{{\mathbf{P}}}_{\Theta }}(t - 1) + {\mathbf{Q}}.$$
(A.4)

Computation of Kalman gain:

$${{{\mathbf{K}}}_{{{\text{EKF}},\Theta }}} = {\mathbf{P}}_{\Theta }^{f}(t){\mathbf{J}}_{\Theta }^{{\text{T}}}{{({{{\mathbf{J}}}_{\Theta }}{\mathbf{P}}_{\Theta }^{f}(t){\mathbf{J}}_{\Theta }^{{\text{T}}} + {\mathbf{R}})}^{{ - 1}}},$$
(A.5)

\({{{\mathbf{J}}}_{\Theta }}\) is the Jacobian of the observation matrix and can be expressed as

$${{{\mathbf{J}}}_{\Theta }} = {{\left. {\frac{{\partial h{{{({\mathbf{x}}(t - 1),{\mathbf{\Theta }})}}^{{\text{T}}}}}}{{\partial \Theta }}} \right|}_{{(\Theta = {{{\hat {\Theta }}}^{f}}(t))}}}.$$
(A.6)

Hence, the measurement update equations are as follows:

$${{{\mathbf{\hat {\Theta }}}}^{a}}(t) = {{{\mathbf{\hat {\Theta }}}}^{f}}(t) + {{{\mathbf{K}}}_{{{\text{EKF}},\Theta }}}({\mathbf{pv}} - h({\mathbf{x}}(t - 1),{{{\mathbf{\hat {\Theta }}}}^{f}}(t))),$$
(A.7)
$${\mathbf{P}}_{\Theta }^{a}(t) = ({\mathbf{I}} - {{{\mathbf{K}}}_{{{\text{EKF}},\Theta }}}{{{\mathbf{J}}}_{\Theta }}){\mathbf{P}}_{\Theta }^{f}(t),$$
(A.8)

1.2 APPENDIX B. CONTINUOUS-TIME PARAMETER FILTER USING USING UKF ESTIMATION LAW

Let us skip the filter initialization and time update equations (mentioned in Appendix A). A set of \((2L + 1)\) sigma points with the associated weights \(w(i)\) are chosen symmetrically about \({{{\mathbf{\hat {\Theta }}}}^{f}}(t)\) as follows [20, 21, 25]:

$${{{\mathbf{\Theta }}}_{s}} = [{{{\mathbf{\hat {\Theta }}}}^{f}}(t){\text{ }}{{{\mathbf{\hat {\Theta }}}}^{f}}(t) + \sqrt {(L + \kappa ){\mathbf{P}}_{\Theta }^{f}(t)} {\text{ }}{{{\mathbf{\hat {\Theta }}}}^{f}}(t) - \sqrt {(L + \kappa ){\mathbf{P}}_{\Theta }^{f}(t)} ].$$
(B.1)

The measurement prediction \(({\mathbf{\hat {p}v}}(t))\), computation of innovation \(({\mathbf{e}}(t))\), covariance matrix of innovation \(({{{\mathbf{P}}}_{{ee}}}(t))\), the cross-covariance matrix between the predicted process/controller parameter(s) estimation error and innovation \(({{{\mathbf{P}}}_{{\theta e}}}(t))\) are computed as follows:

$${\mathbf{p}}{{{\mathbf{v}}}_{\Theta }}(t) = h({\mathbf{\hat {g}}}(t - 1),{{{\mathbf{\Theta }}}_{s}}),$$
(B.2)
$${\mathbf{\hat {p}v}}(t) = \sum\limits_0^{2L} {w_{i}^{m}{\mathbf{p}}{{{\mathbf{v}}}_{\Theta }}(t)} ,$$
(B.3)
$${\mathbf{e}}(t) = {\mathbf{pv}}(t) - {\mathbf{\hat {p}v}}(t),$$
(B.4)
$${{{\mathbf{P}}}_{{ee}}}(t) = \sum\limits_{i = 0}^{2L} {w_{i}^{c}({\mathbf{pv}}_{\Theta }^{i}(t) - {\mathbf{\hat {p}v}}(t)} ){{({\mathbf{pv}}_{\Theta }^{i}(t) - {\mathbf{\hat {p}v}}(t))}^{{\text{T}}}} + {\mathbf{R}},$$
(B.5)
$${{{\mathbf{P}}}_{{\theta e}}}(t) = \sum\limits_{i = 0}^{2L} {w_{i}^{c}({\mathbf{\hat {\Theta }}}_{s}^{i}(t) - {{{{\mathbf{\hat {\Theta }}}}}^{f}}(t))} ({{({\mathbf{pv}}_{\Theta }^{i}(t) - {\mathbf{\hat {p}v}}(t))}^{{\text{T}}}},$$
(B.6)

where \({{w}_{0}} = {\kappa \mathord{\left/ {\vphantom {\kappa {(L + \kappa )}}} \right. \kern-0em} {(L + \kappa )}}\) and \({{w}_{i}} = \kappa {\text{/}}(2(L + \kappa ))\). The Kalman gain is computed as

$${{{\mathbf{K}}}_{{{\text{UKF}},{\mathbf{\Theta }}}}} = {{{\mathbf{P}}}_{{\theta e}}}({\mathbf{P}}_{{ee}}^{{ - 1}}).$$
(B.7)

Hence, the measurement update equations are as follows:

$${{{\mathbf{\hat {\Theta }}}}^{a}}(t) = {{{\mathbf{\hat {\Theta }}}}^{f}}(t) + {{{\mathbf{K}}}_{{{\text{UKF}},{\mathbf{\Theta }}}}}{\mathbf{e}}(t),$$
(B.8)
$${\mathbf{P}}_{{\mathbf{\Theta }}}^{a} = {\mathbf{P}}_{{\mathbf{\Theta }}}^{f} - {{{\mathbf{K}}}_{{{\text{UKF}},{\mathbf{\Theta }}}}}{{{\mathbf{P}}}_{{ee}}}{\mathbf{K}}_{{{\text{UKF}},{\mathbf{\Theta }}}}^{{\text{T}}}.$$
(B.9)

1.3 APPENDIX C. CONTINUOUS-TIME EnKF FILTER DERIVED FROM EKF ESTIMATION SCHEME

Let’s assume, \({{{\mathbf{\bar {\Theta }}}}^{f}}\) and \({{{\mathbf{\bar {\Theta }}}}^{a}}\) represent forecast and posterior ensemble mean of the estimated parameter(s) \({{{\mathbf{\hat {\Theta }}}}^{f}}\) and \({{{\mathbf{\hat {\Theta }}}}^{a}}\) respectively whereas \({{{\mathbf{P}}}^{f}}\) and \({{{\mathbf{P}}}^{a}}\) corresponds to the covariance’s of the forecast and analysis respectively. Skipping the filter initialization (see Appendix A), time update equations can be written as [17, 19]:

$${{{\mathbf{\hat {\Theta }}}}^{f}}(t) = f({{{\mathbf{\hat {\Theta }}}}^{a}}(t - 1)) + w,$$
(C.1)
$${{{\mathbf{P}}}^{f}}{{H}^{{\text{T}}}} \equiv \frac{1}{{N - 1}}\sum\limits_{k = 1}^N {({{{{\mathbf{\hat {\Theta }}}}}^{f}} - \overline {{{{\mathbf{\Theta }}}^{f}}} )} {{(H{{{\mathbf{\hat {\Theta }}}}^{f}} - \overline {H{{{\mathbf{\Theta }}}^{f}}} )}^{{\text{T}}}},$$
(C.2)
$$H{{{\mathbf{P}}}^{f}}{{H}^{{\text{T}}}} \equiv \frac{1}{{N - 1}}\sum\limits_{k = 1}^N {(H{{{{\mathbf{\hat {\Theta }}}}}^{f}} - \overline {H{{{\mathbf{\Theta }}}^{f}}} )} {{(H{{{\mathbf{\hat {\Theta }}}}^{f}} - \overline {H{{{\mathbf{\Theta }}}^{f}}} )}^{{\text{T}}}},$$
(C.3)
$${{{\mathbf{K}}}_{{{\text{EnKF}},\Theta }}} = {{{\mathbf{P}}}^{f}}{{H}^{{\text{T}}}}{{(H{{{\mathbf{P}}}^{f}}{{H}^{{\text{T}}}} + {\mathbf{R}})}^{{ - 1}}},$$
(C.4)
$${\mathbf{p}}{{{\mathbf{v}}}_{i}}(t) = {\mathbf{pv}}(t) + {v},$$
(C.5)
$${{{\mathbf{\hat {\Theta }}}}^{a}}(t) = {{{\mathbf{\hat {\Theta }}}}^{f}}(t) + {{{\mathbf{K}}}_{{{\text{EnKF}},\Theta }}}({\mathbf{p}}{{{\mathbf{v}}}_{i}}(t) - H{{{\mathbf{\hat {\Theta }}}}^{a}}(t)).$$
(C.6)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Panda, A., Pandey, I. et al. Parameter Estimation and Its Application on Designing Adaptive Nonlinear Model Based Control Schemes for the Time Varying System. Aut. Control Comp. Sci. 56, 324–336 (2022). https://doi.org/10.3103/S0146411622040022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622040022

Keywords:

Navigation