Skip to main content
Log in

Synthesis of Stochastic Optimal Control Based on Nonlinear Probabilistic Criteria

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Method of synthesis of control of stochastic processes is considered. Compared to the known approaches, the proposed method provides significantly more efficient process control by optimizing according to criteria that are nonlinearly dependent on the density of the distribution of the process and not on its particular characteristics (expectation, variance, etc.). The procedure for its computational implementation has been developed. A numerical example of optimal control synthesis illustrating the effectiveness of the proposed method is given. The advantageous features of the developed approach provide the possibility of its wide practical application in modern and promising information and control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Dub, J., Stochastic Processes, New York: Wiley, 1953.

    Google Scholar 

  2. Bogachev, V.I., Krylov, N.V., Röckner, M., and Shaposhnikov, S.V., Fokker–Planck–Kolmogorov Equations, Mathematical Surveys and Monographs, vol. 207, American Mathematical Society, 2022.

  3. Frank, T.D., Nonlinear Fokker–Planck Equations: Fundamentals and Applications. Springer Series in Synergetics, Berlin: Springer, 2005. https://doi.org/10.1007/b137680

  4. Butkovsky, A.G., Teoriya optimal’nogo upravleniya sistemami s raspredelennymi parametrami (Theory of Optimal Control of Systems with Distributed Parameters), Moscow: Nauka, 1965.

  5. Neittaanmaki, P. and Tiba, D., Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, New York: M. Dekker, 1994.

    MATH  Google Scholar 

  6. Kibzun, A.I. and Ignatov, A.N., Reduction of the two-step problem of stochastic optimal control with bilinear model to the problem of mixed integer linear programming, Autom. Remote Control, 2016, vol. 77, no. 12, pp. 2175–2192.  https://doi.org/10.1134/S0005117916120079

    Article  MathSciNet  MATH  Google Scholar 

  7. Malyshev, V.V. and Kabanov, D.S., An algorithm of correction of autonomous underwater vehicle control structure for attainability domain construction, Izv. Vyssh. Uchebn. Zaved., Priborostr., 2012, vol. 55, no. 7, pp. 21–27.

    Google Scholar 

  8. Malyshev, V.V. and Karp, K.A., Veroyatnostnyi analiz i upravlenie (Probabilistic Analysis and Control), Moscow: Mosk. Aviats. Inst., 2003.

  9. Bryson, A.E. and Ho, Y.C., Applied Optimal Control: Optimization, Estimation and Control, Waltham, Mass.: Blaisdell, 1969.

    Google Scholar 

  10. Saridis, G.N., Self-Organizing Control of Stochastic Systems, New York: M. Dekker, 1977.

    MATH  Google Scholar 

  11. Rauh, A., Senkel, L., Aschermann, H., Saurin, V.V., and Kostin, G.V., An integrodifferential approach to modeling, control, state estimation and optimization for heat transfer systems, Int. J. Appl. Math. Comput. Sci., 2016, vol. 26, no. 1, pp. 15–30.  https://doi.org/10.1515/amcs-2016-0002

    Article  MathSciNet  MATH  Google Scholar 

  12. Kullbak, S., Information Theory and Statistics, New York: John Wiley & Sons, 1959.

    Google Scholar 

  13. Mikhailov, V.P., Differentsial’nye uravneniya v chastnykh proizvodnykh (Partial Differential Equations), Moscow: Nauka, 1983.

  14. Ladyzhenskaya, O.A., Kraevye zadachi matematicheskoi fiziki (Boundary Value Problems of Mathematical Physics), Moscow: Nauka, 1973.

  15. Vasiliev, F.P., Metody resheniya ekstremal’nykh zadach (Methods of Solving Extremal Problems), Moscow: Nauka, 1981.

  16. Berezin, I.S. and Zhidkov, N.P., Computing Methods, 2 vols., Oxford: Pergamon Press, 1965.

    MATH  Google Scholar 

  17. LeVeque, R.J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, Philadelphia: SIAM, 2007.

    Book  MATH  Google Scholar 

  18. Zauderer, E., Partial Differential Equations of Applied Mathematics, Hoboken, N.J.: John Wiley & Sons, 2006.

    Book  MATH  Google Scholar 

  19. Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., Mishchenko, E.S., The Mathematical Theory of Optimal Processes, New York: Wiley, 1962.

    Google Scholar 

  20. Modern Numerical Methods for Solving Ordinary Differential Equations, Hall, C.A. and Watt, J.M., Eds., Clarendon Press, 1976.

    MATH  Google Scholar 

  21. Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal Control Problems), Moscow: Nauka, 1978.

  22. Gardiner, C.W., Handbook of Stochastic Methods, Berlin: Springer, 1983.

    Book  MATH  Google Scholar 

  23. Krasovsky, A.A., Spravochnik po teorii avtomaticheskogo upravleniya (Reference Book on the Theory of Automatic Control), Moscow: Nauka, 1987.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sergey Sokolov or Marianna Polyakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boris Klepfish, Sokolov, S. & Polyakova, M. Synthesis of Stochastic Optimal Control Based on Nonlinear Probabilistic Criteria. Aut. Control Comp. Sci. 56, 421–427 (2022). https://doi.org/10.3103/S0146411622050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622050066

Keywords:

Navigation