Skip to main content
Log in

An Improved Artificial Bee Colony Optimization Algorithm Based on Slime Mold and Marine Predator

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

Artificial bee colony (ABC) algorithm is widely used in optimization problems due to its few parameters and simple structure. However, there are shortcomings such as relatively slow convergence and easy to optimize stagnation. This paper proposes an artificial bee colony algorithm based on slime mold and marine predators (SMA-MPA-ABC) to overcome the insufficiency of ABC algorithm. The slime mold foraging strategy is introduced into the neighborhood search process of employed bees. The employed bee generates positive feedback and negative feedback according to the size of the food concentration, generates adaptive weights, and adjusts the search mode to search in the direction of the optimal solution to speed up the convergence speed. In addition, the fish gathering device effect in the marine predator algorithm is introduced in the scout bee phase to avoid optimization stagnation. The simulation experiment results of 15 benchmark test functions show that SMA-MPA-ABC algorithm has a faster convergence speed, higher convergence accuracy, and better stability than the ABC algorithm and other improved ABC algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Karaboga, D., An idea based on honey bee swarm for numerical optimization, Technical Report-Tr06, Kayseri, Turkey: Erciyes Univ., 2005.

    Google Scholar 

  2. Karaboga, D. and Basturk, B., On the performance of artificial bee colony (ABC) algorithm, Appl. Soft Comput., 2007, vol. 8, no. 1, pp. 687–697.  https://doi.org/10.1016/j.asoc.2007.05.007

    Article  MATH  Google Scholar 

  3. Ogren, R.M. and Kong, S.C., Optimization of diesel fuel injection strategies through applications of cooperative particle swarm optimization and artificial bee colony algorithms, Int. J. Engine Res., 2021, vol. 22, no. 9, pp. 3030–3041.  https://doi.org/10.1177/1468087420954020

    Article  Google Scholar 

  4. Xu, Y. and Wang, X.L., An artificial bee colony algorithm for scheduling call centres with weekend-off fairness, Appl. Soft Comput., 2021, vol. 109, p. 107542. https://doi.org/10.1016/j.asoc.2021.107542

    Article  Google Scholar 

  5. Bayraktar, T., Ersöz, F., and Kubat, C., Effects of memory and genetic operators on artificial bee colony algorithm for single container loading problem, Appl. Soft Comput., vol. 108, p. 107462. https://doi.org/10.1016/j.asoc.2021.107462

  6. Li, S.M., Chen, H.L., Wang, M.J., Heidari, A.A., and Mirjalili, S., Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comput. Syst., 2020, vol. 111, pp. 300–323.  https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  7. Faramarzi, A., Heidarinejad, M., Mirjalili, S., and Gandomi, A.H., Marine predators algorithm: a nature-inspired metaheuristic, Expert Syst. Appl., 2020, vol. 152, p. 113377.  https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  8. Zhang, M., Tan, Y.T., Zhu, J., Chen, Y.N., and Liu, H.M., Modeling and simulation of improved artificial bee colony algorithm with data-driven optimization, Simul. Model. Pract. Theory, 2019, vol. 93, pp. 305–321. https://doi.org/10.1016/j.simpat.2018.06.004

    Article  Google Scholar 

  9. Bai, W., Eke, I., and Lee, K.Y., An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem, Control Eng. Pract., 2017, vol. 61, pp. 163–172.  https://doi.org/10.1016/j.conengprac.2017.02.010

    Article  Google Scholar 

  10. Taetragool, U., Sirinaovakul, B., and Achalakul, T., NeSS: A modified artificial bee colony approach based on nest site selection behavior, Appl. Soft Comput., 2018, vol. 71, pp. 659–671.  https://doi.org/10.1016/j.asoc.2018.06.048

    Article  Google Scholar 

  11. Bajer, D. and Zorić, B., An effective refined artificial bee colony algorithm for numerical optimisation, Inf. Sci., 2019, vol. 504, pp. 221–275. https://doi.org/10.1016/j.ins.2019.07.022

    Article  MATH  Google Scholar 

  12. Sharma, N., Sharma, H., and Sharma, A., Beer froth artificial bee colony algorithm for job-shop scheduling problem, Appl. Soft Comput., 2018, vol. 68, no. 4, pp. 507–524.  https://doi.org/10.1016/j.asoc.2018.04.001

    Article  Google Scholar 

  13. Xiang, W.L., Li, Y.Z., Meng, X.L., Zhang, C.M., and An, M.Q., A grey artificial bee colony algorithm, Appl. Soft Comput., 2017, vol. 60, pp. 1–17. https://doi.org/10.1016/j.asoc.2017.06.015

    Article  Google Scholar 

  14. Xiang, W.L. and An, M.Q., An efficient and robust artificial bee colony algorithm for numerical optimization, Comput. Oper. Res., 2013, vol. 40, no. 5, pp. 1256–1265.  https://doi.org/10.1016/j.cor.2012.12.006

    Article  MATH  Google Scholar 

  15. Wang, H., Wang, W.J., Xiao, S.Y., Cui, Z.H., Xu, M.Y., and Zhou, X.Y., Improving artificial bee colony algorithm using a new neighborhood selection mechanism, Inf. Sci., 2020, vol. 527, pp. 227–240.  https://doi.org/10.1016/j.ins.2020.03.064

    Article  Google Scholar 

  16. Abdel-Basset, M., Chang, V., and Mohamed, R., HSMA_WOA: A hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray images, Appl. Soft Comput., 2020, vol. 95, p. 106642.  https://doi.org/10.1016/j.asoc.2020.106642

    Article  Google Scholar 

  17. Rizk-Allah, R.M., Hassanien, A.E., and Song, D., Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites, ISA Trans., 2021, vol. 121, pp. 191–205.  https://doi.org/10.1016/j.isatra.2021.04.011

    Article  Google Scholar 

  18. Hassan, M.H., Kamel, S., Abualigah, L., and Eid, A., Development and application of slime mould algorithm for optimal economic emission dispatch, Expert Syst. Appl., 2021, vol. 128, p. 115205.  https://doi.org/10.1016/j.eswa.2021.115205

    Article  Google Scholar 

  19. Mohamed, A.B., Mohamed, R., Elhoseny, M., Bashir, A.K., and Kumar, N., Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing applications, IEEE Trans. Ind. Inf., 2020, vol. 17, no. 7, pp. 5068–5076.  https://doi.org/10.1109/TII.2020.3001067

    Article  Google Scholar 

  20. Houssein, E.H., Mohamed, M., Ahmed, F., Hegazy, R., and Kumar, N., A modified marine predator algorithm based on opposition based learning for tracking the global MPP of shaded PV system, Expert Syst. Appl., 2021, vol. 183, p. 115253.  https://doi.org/10.1016/j.eswa.2021.115253

    Article  Google Scholar 

  21. Ho, L.V., Nguyen, D.H., Mousavi, M., De, R.G., Bui, T.T., Gandomi, A.H., and Wahab, M.A., A hybrid computational intelligence approach for structural damage detection using marine predator algorithm and feedforward neural networks, Comput. Struct., 2021, vol. 252, p. 106568.  https://doi.org/10.1016/j.compstruc.2021.106568

    Article  Google Scholar 

  22. Panagant, N., Yıldız, M., Pholdee, N., Yıldız, A.R., Bureerat, S., and Sait, S.M., A novel hybrid marine predators-nelder-mead optimization algorithm for the optimal design of engineering problems, Mater. Test, 2021, vol. 63, no. 5, pp. 453–457.  https://doi.org/10.1515/mt-2020-0077

    Article  Google Scholar 

  23. Filmalter, J.D., Dagorn, L., Cowley, P.D., and Taquet, M., First descriptions of the behavior of silky sharks, Carcharhinus falciformis, around drifting fish aggregating devices in the Indian Ocean, Bull. Mar. Sci., 2011, vol. 87, no. 3, pp. 325–337.  https://doi.org/10.5343/bms.2010.1057

    Article  Google Scholar 

  24. Wolpert, D.H. and Macready, W.G., No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1997, vol. 1, no. 1, pp. 67–82.  https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liyi Zhang, Tang, J., Liu, T. et al. An Improved Artificial Bee Colony Optimization Algorithm Based on Slime Mold and Marine Predator. Aut. Control Comp. Sci. 56, 481–493 (2022). https://doi.org/10.3103/S0146411622060116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622060116

Keywords:

Navigation