Skip to main content

Towards Automatic Deductive Verification of C Programs with Sisal Loops Using the C-lightVer System

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The C-lightVer system for deductive verification of C programs has been developed at the Institute of Informatics Systems of the Siberian Branch of the Russian Academy of Sciences (IIS SB RAS). C-kernel is an intermediate verification language in this system. The cloud parallel programming system (CPPS) is also developed at the IIS SB RAS. Cloud Sisal is the input language of the CPPS system. The main feature of the CPPS system is the implicit parallel execution based on the automatic parallelization of Cloud Sisal loops. Cloud-Sisal-kernel is an intermediate verification language in the CPPS system. Our goal is the automatic parallelization of such a superset of the C language that allows implementing automatic verification. Our solution is a superset of the C-kernel language such as the C-Sisal-kernel language. The first result presented in this article is an extension of C-kernel by Cloud-Sisal-kernel loops. As a consequence, the C-Sisal-kernel language is developed. The second result presented in this article is the extension of the C-kernel axiomatic semantics by an inference rule for Cloud-Sisal-kernel loops. This article also presents our approach to the problem of automating deductive verification in the case of definite iterations over data sequences. Such loops are called definite iterations. Our solution is a composition of a symbolic method of verification of definite iterations, verification condition metageneration, and mixed axiomatic semantics. The symbolic method of verification of definite iterations allows us to define inference rules for such loops without invariants. Symbolic replacement of definite iterations by recursive functions is the basis of this method. The resulting verification conditions using recursive functions correspond to the logical basis of the ACL2 prover. We use the ACL2 system based on computable recursive functions. Verification condition metageneration simplifies the implementation of new inference rules in the verification system. In some cases, the use of mixed axiomatic semantics leads to simpler verification conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Maryasov, I.V., Nepomniaschy, V.A., Promsky, A.V., and Kondratyev, D.A., Automatic C program verification based on mixed axiomatic semantics, Autom. Control Comput. Sci., 2014, vol. 48, no. 7, pp. 407–414. https://doi.org/10.3103/S0146411614070141

    Article  Google Scholar 

  2. Kondratyev, D.A. and Promsky, A.V., Developing a self-applicable verification system. Theory and practice, Autom. Control Comput. Sci., 2015, vol. 49, no. 7, pp. 445–452. https://doi.org/10.3103/S0146411615070123

    Article  Google Scholar 

  3. Kondratyev, D., Implementing the symbolic method of verification in the C-light project, Perspectives of System Informatics. PSI 2017,Petrenko, A. and Voronkov, A., Eds., Lecture Notes in Computer Science, vol. 10742, Cham: Springer, 2018, pp. 227–240. https://doi.org/10.1007/978-3-319-74313-4_17

    Book  Google Scholar 

  4. Kondratyev, D.A., Maryasov, I.V., and Nepomniaschy, V.A., The automation of C program verification by the symbolic method of loop invariant elimination, Autom. Control Comput. Sci., 2019, vol. 53, no. 7, pp. 653–662. https://doi.org/10.3103/S0146411619070101

    Article  Google Scholar 

  5. Kondratyev, D.A. and Promsky, A.V., The complex approach of the C-lightVer system to the automated error localization in C-programs, Autom. Control Comput. Sci., 2020, vol. 54, no. 7, pp. 728–739. https://doi.org/10.3103/S0146411620070093

    Article  Google Scholar 

  6. Hoare, C.A.R., An axiomatic basis for computer programming, Commun. ACM, 1969, vol. 12, no. 10, pp. 576–580. https://doi.org/10.1145/363235.363259

    Article  MATH  Google Scholar 

  7. Apt, K.R. and Olderog, E.-R., Fifty years of Hoare’s logic, Formal Aspects Comput., 2019, vol. 31, no. 6, pp. 751–807. https://doi.org/10.1007/s00165-019-00501-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Hähnle, R. and Huisman, M., Deductive software verification: From pen-and-paper proofs to industrial tools, Computing and Software Science, Steffen, B. and Woeginger, G., Eds., Lecture Notes in Computer Science, vol. 10000, Springer, 2019, pp. 345–373. https://doi.org/10.1007/978-3-319-91908-9_18

  9. Apt, K.R. and Olderog, E.-R., Assessing the success and impact of Hoare’s logic, Theories of Programming: The Life and Works of Tony Hoare, Jones, C.B. and Misra, J., Eds., New York: Association for Computing Machinery, 2021, pp. 41–76. https://doi.org/10.1145/3477355.3477359

    Book  MATH  Google Scholar 

  10. Nepomniaschy, V.A., Anureev, I.S., Mikhailov, I.N., and Promskii, A.V., Towards verification of C programs. C-light language and its formal semantics, Program. Comput. Software, 2002, vol. 28, no. 6, pp. 314–323.https://doi.org/10.1023/A:1021045909505

    Article  MathSciNet  Google Scholar 

  11. Nepomniaschy, V.A., Anureev, I.S., and Promskii, A.V., Towards verification of C programs: Axiomatic semantics of the C-kernel language, Program. Comput. Software, 2003, vol. 29, no. 6, pp. 338–350. https://doi.org/10.1023/B:PACS.0000004134.24714.e5

    Article  MathSciNet  MATH  Google Scholar 

  12. Nepomniaschy, V.A., Symbolic method of verification of definite iterations over altered data structures, Program. Comput. Software, 2005, vol. 31, no. 1, pp. 1–9. https://doi.org/10.1007/s11086-005-0001-0

    Article  MathSciNet  MATH  Google Scholar 

  13. Moriconi, M. and Schwartz, R.L., Automatic construction of verification condition generators from Hoare logics, Automata, Languages, and Programming. ICALP 1981, Even, S. and Kariv, O., Eds., Lecture Notes in Computer Science, vol. 115, Springer, 1981, pp. 363–377. https://doi.org/10.1007/3-540-10843-2_30

    Book  MATH  Google Scholar 

  14. Moore, J.S., Milestones from the Pure Lisp theorem prover to ACL2, Formal Aspects Comput., 2019, vol. 31, no. 6, pp. 699–732. https://doi.org/10.1007/s00165-019-00490-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Kasyanov, V. and Kasyanova, E., Methods and system for cloud parallel programming, Proc. 21st Int. Conference on Enterprise Information Systems, 2019, vol. 1, pp. 623–629. https://doi.org/10.5220/0007750506230629

  16. Kasyanov, V.N. and Stasenko, A.P., Sisal 3.2 language structure decomposition, Proc. European Computing Conference, Mastorakis, N., Mladenov, V., and Kontargyri, V., Eds., Lecture Notes in Electrical Engineering, vol. 28, Springer, 2009, pp. 533–543. https://doi.org/10.1007/978-0-387-85437-3_53

  17. Stasenko, A., Sisal 3.2 Language features overview, Parallel Computing Technologies. PaCT 2011, Malyshkin, V., Ed., Lecture Notes in Computer Science, vol. 6873, Springer, 2011, pp. 110–124. https://doi.org/10.1007/978-3-642-23178-0_10

    Book  Google Scholar 

  18. Kasyanov, V., Sisal 3.2: Functional language for scientific parallel programming, Enterprise Inf. Syst., 2013, vol. 7, no. 2, pp. 227–236. https://doi.org/10.1080/17517575.2012.744854

    Article  Google Scholar 

  19. Feo, J.T., Cann, D.C., and Oldehoeft, R.R., A report on the sisal language project, J. Parallel Distributed Comput., 1990, vol. 10, no. 4, pp. 349–366. https://doi.org/10.1016/0743-7315(90)90035-N

    Article  Google Scholar 

  20. Gaudiot, J.-L., DeBoni, T., Feo, J., Böhm, W., Najjar, W., and Miller, P., The Sisal project: Real world functional programming, Compiler Optimizations for Scalable Parallel Systems,Pande, S. and Agrawal, D.P., Eds., Lecture Notes in Computer Science, vol. 1808, Springer, 2001, pp. 45–72. https://doi.org/10.1007/3-540-45403-9_2

    Book  Google Scholar 

  21. Pyzhov, K. and Idrisov, R., Back-end translator for Sisal 3.1 compiler, Bull. Novosibirsk Comput. Center, 2013, no. 35, pp. 101–119.https://doi.org/10.31144/bncc.cs.2542-1972.2013.n35.p101-119

  22. Kondratyev, D.A. and Promsky, A.V., Towards verification of scientific and engineering programs. The CPPS project,Journal of Computational Technologies, 2020, vol. 25, no. 5, pp. 91–106. https://doi.org/10.25743/ICT.2020.25.5.008

    Article  Google Scholar 

  23. Dean, J. and Ghemawat, S., MapReduce: Simplified data processing on large clusters, Proc. 6th Conf. on Symp. on Operating Systems Design & Implementation, 2004, vol. 6.

  24. Kaufmann, M. and Moore, J.S., Iteration in ACL2, Proc. Sixteenth Int. Workshop on the ACL2 Theorem Prover and Its Applications, ser. EPTCS, 2020, vol. 327, pp. 16–31. https://doi.org/10.4204/EPTCS.327.2

  25. Blom, S., Darabi, S., Huisman, M., and Safari, M., Correct program parallelisations,Int. J. Software Tools Technol. Transfer, 2021, vol. 23, no. 5, pp. 741–763. https://doi.org/10.1007/s10009-020-00601-z

    Article  Google Scholar 

  26. Jacobs, B., Kiniry, J., and Warnier, M., Java program verification challenges, Formal Methods for Components and Objects, de Boer, F.S., Bonsangue, M.M., Graf, S., and de Roever, W.P., Eds., Lecture Notes in Computer Science, vol. 2852, Springer, 2003, pp. 202–219. https://doi.org/10.1007/978-3-540-39656-7_8

  27. Cok, D.R., Reasoning about Functional Programming in Java and C++, ISSTA ’18: Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, Amsterdam, 2018, New York: Association for Computing Machinery, 2018, pp. 37–39. https://doi.org/10.1145/3236454.3236483

    Book  Google Scholar 

  28. Cok, D.R. and Tasiran, S., Practical methods for reasoning about Java 8’s functional programming features, in Verified Software: Theories, Tools, and Experiments. VSTTE 2018, Piskac, R. and Rümmer, P., Eds., Lecture Notes in Computer Science, vol. 11294, Springer, 2018, pp. 267–278. https://doi.org/10.1007/978-3-030-03592-1_15

    Book  Google Scholar 

  29. ISO/IEC 14882:2020: Programming language C++. ISO/IEC, 2020.

  30. ISO/IEC 9899:2011: Programming language C. ISO/IEC, 2011.

  31. Krebbers, R. and Wiedijk, F., A typed C11 semantics for interactive theorem proving, CPP ’15: Proc. 2015 Conference on Certified Programs and Proofs, Mumbai, India, 2015, New York: Association for Computing Machinery, 2015, pp. 15–27. https://doi.org/10.1145/2676724.2693571

  32. Sammler, M., Lepigre, R., Krebbers, R., Memarian, K., Dreyer, D., and Garg, D., RefinedC: automating the foundational verification of C code with refined ownership types, PLDI 2021: Proc. 42nd ACM SIGPLAN Int. Conference on Programming Language Design and Implementation, New York: Association for Computing Machinery, 2021, pp. 158–174. https://doi.org/10.1145/3453483.3454036

  33. Myreen, M.O. and Gordon, M.J.C., Transforming programs into recursive functions, Electron. Notes Theor. Comput. Sci., 2009, vol. 240, pp. 185–200.  https://doi.org/10.1016/j.entcs.2009.05.052

    Article  MATH  Google Scholar 

  34. Blanc, R., Kuncak, V., Kneuss, E., and Suter, P., An overview of the Leon verification system: verification by translation to recursive functions, SCALA ’13: Proc. 4th Workshop on Scala, Montpellier, France, 2013, New York: Association for Computing Machinery, 2013, p. 1. https://doi.org/10.1145/2489837.2489838

  35. Humenberger, A., Jaroschek, M., and Kovács, L., Invariant generation for multi-path loops with polynomial assignments, Verification, Model Checking, and Abstract Interpretation. VMCAI 2018, Dillig, I. and Palsberg, J., Eds., Lecture Notes in Computer Science, vol. 10747, Springer, 2018, pp. 226–246. https://doi.org/10.1007/978-3-319-73721-8_11

    Book  MATH  Google Scholar 

  36. Chakraborty, S., Gupta, A., and Unadkat, D., Diffy: Inductive reasoning of array programs using difference invariants, Computer Aided Verification. CAV 2021, Silva, A. and Leino, K.R.M., Eds., Lecture Notes in Computer Science, vol. 12760, Springer, 2021, pp. 911–935. https://doi.org/10.1007/978-3-030-81688-9_42

    Book  MATH  Google Scholar 

  37. Tuerk, T., Local reasoning about while-loops, Proc. Theory Workshop at VSTTE 2010, 2010, pp. 29–39.

  38. Blanchard, A., Loulergue, F., and Kosmatov, N., Towards full proof automation in Frama-C using auto-active verification, NASA Formal Methods. NFM 2019, Badger, J. and Rozier, K., Eds., Lecture Notes in Computer Science, vol. 11460, Springer, 2019, pp. 88–105. https://doi.org/10.1007/978-3-030-20652-9_6

    Book  Google Scholar 

  39. Baudin, P., Bobot, F., Bühler, D., Correnson, L., Kirchner, F., Kosmatov, N., Maroneze, A., Perrelle, V., Prevosto, V., Signoles, J., and Williams, N., The dogged pursuit of bug-free C programs: the Frama-C software analysis platform, Commun. ACM, 2021, vol. 64, no. 8, pp. 56–68. https://doi.org/10.1145/3470569

    Article  Google Scholar 

  40. Attali, I., Caromel, D., and Wendelborn, A., A formal semantics and an interactive environment for Sisal, Tools and Environments for Parallel and Distributed Systems, Zaky, A. and Lewis, T., Eds., The Springer International Series in Software Engineering, vol. 2, Boston, Springer, 1996, pp. 229–256. https://doi.org/10.1007/978-1-4615-4123-3_11

  41. Kondratyev, D. and Promsky, A., Proof strategy for automated Sisal program verification, Software Technology: Methods and Tools. TOOLS 2019, Mazzara, M., Bruel, JM., Meyer, B., and Petrenko, A., Eds., Lecture Notes in Computer Science, vol. 11771, Cham: Springer, 2019, pp. 113–120. https://doi.org/10.1007/978-3-030-29852-4_9

    Book  Google Scholar 

  42. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., and Weigl, A., Relational equivalence proofs between imperative and MapReduce algorithms, Verified Software. Theories, Tools, and Experiments. VSTTE 2018, Piskac, R. and Rümmer, P., Eds., Lecture Notes in Computer Science, vol. 11294, Springer, 2018, pp. 248–266. https://doi.org/10.1007/978-3-030-03592-1_14

  43. Parthasarathy, G., Müller, P., and Summers, A., Formally validating a practical verification condition generator, Computer Aided Verification. CAV 2021, Silva, A. and Leino, K.R.M., Eds., Lecture Notes in Computer Science, vol. 12760, Springer, 2021, pp. 704–727. https://doi.org/10.1007/978-3-030-81688-9_33

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 18-11-00118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kondratyev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyev, D.A. Towards Automatic Deductive Verification of C Programs with Sisal Loops Using the C-lightVer System. Aut. Control Comp. Sci. 56, 669–687 (2022). https://doi.org/10.3103/S0146411622070070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411622070070