Skip to main content
Log in

ResNet Combined with Attention Mechanism for Genomic Deletion Variant Prediction

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

In genetics and medical practice, structural variants (SV) in the genome are thought to be the root cause of numerous diseases, particularly genetic diseases. Accurate structural variant prediction is the foundation for identifying and screening pathogenic variants and performing medication genomics analysis, which is a challenging task. However, data in the field of genomics is typically massive, high-dimensional, and serialized, and existing variant prediction tools are affected by the range and type of variants, resulting in less accurate results. As a result, an effective method for predicting structural variation is critical. In this paper, a variation prediction model DEL-RESSP based on ResNet and attention mechanism is proposed for predicting deletion structural variants. To begin, the deletion variant feature information is derived from the three alignment data of read depth, split read pair, and discordant read pair, and the comparison data is transformed into artificial images by encoding to provide reliable input for the subsequent network models. Second, attention mechanisms are combined based on convolutional networks to improve image sensitivity to local information to improve prediction accuracy. Three SV prediction tools, CNVnator, BreakDancer, and Pindel, were used in this study to test the predictive effectiveness of DEL-RESSP in predicting large-scale deletion variants. The results show that DEL-RESSP can predict deletion variants with 96.93% accuracy, which is a 5–10% improvement over combining only a single strategy, as well as a comparison to existing deep learning methods. DEL-RESSP fully utilizes deep learning in image processing, providing some reference value in subsequent variant analysis and gene function annotation. Part of the classification model code used in this paper can be found on https://github.com/JQ1209/DEL-RESSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Mahmoud, M., Gobet, N., Cruz-Dávalos, D.I., Mounier, N., Dessimoz, C., and Sedlazeck, F.J., Structural variant calling: The long and the short of it, Genome Biol., 2019, vol. 20, no. 1, p. 246. https://doi.org/10.1186/s13059-019-1828-7

    Article  Google Scholar 

  2. Van Belzen, I.A.E.M., Schönhuth, A., Kemmeren, P., and Hehir-Kwa, J.Y., Structural variant detection in cancer genomes: Computational challenges and perspectives for precision oncology, NPJ Precis. Oncol., 2021, vol. 5, no. 1, p. 15. https://doi.org/10.1038/s41698-021-00155-6

    Article  Google Scholar 

  3. Buske, O.J., Manickaraj, A., Mital, S., Ray, P.N., and Brudno, M., Identification of deleterious synonymous variants in human genomes, Bioinformatics, 2013, vol. 29, no. 15, pp. 1843–1850. https://doi.org/10.1093/bioinformatics/btt308

    Article  Google Scholar 

  4. Zhang, X., Li, M., Lin, H., Rao, X., Feng, W., Yang, Yu., Mort, M., Cooper, D.N., Wang, Yu., Wang, Ya., Wells, C., Zhou, Ya., and Liu, Yu., regSNPs-splicing: A tool for prioritizing synonymous single-nucleotide substitution, Hum. Genet., 2017, vol. 136, no. 9, pp. 1279–1289. https://doi.org/10.1007/s00439-017-1783-x

    Article  Google Scholar 

  5. Gelfman, S., Wang, Q., Mcsweeney, K.M., Ren, Z., La Carpia, F., Halvorsen, M., Schoch, K., Ratzon, F., Heinzen, E.L., Boland, M.J., Petrovski, S., and Goldstein, D.B., Annotating pathogenic non-coding variants in genic regions, Nat. Commun., 2017, vol. 8, no. 1, p. 236. https://doi.org/10.1038/s41467-017-00141-2

    Article  Google Scholar 

  6. Li, B., Krishnan, V.G., Mort, M.E., Xin, F., Kamati, K.K., Cooper, D.N., Mooney, S.D., and Radivojac, P., Automated inference of molecular mechanisms of disease from amino acid substitutions, Bioinformatics, 2009, vol. 25, no. 21, pp. 2744–2750. https://doi.org/10.1093/bioinformatics/btp528

    Article  Google Scholar 

  7. Niroula, A., Urolagin, S., and Vihinen, M., PON-P2: Prediction method for fast and reliable identification of harmful variants, PLoS One, 2015, vol. 10, no. 2, p. e0117380. https://doi.org/10.1371/journal.pone.0117380

    Article  Google Scholar 

  8. Carter, H., Douville, C., Stenson, P.D., Cooper, D.N., and Karchin, R., Identifying Mendelian disease genes with the Variant Effect Scoring Tool, BMC Genomics, 2013, vol. 14, p. S3. https://doi.org/10.1186/1471-2164-14-s3-s3

    Article  Google Scholar 

  9. Livingstone, M., Folkman, L., Yang, Yu., Zhang, P., Mort, M., Cooper, D.N., Liu, Yu., Stantic, B., and Zhou, Ya., Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants, Hum. Mutat., 2017, vol. 38, no. 10, pp. 1336–1347. https://doi.org/10.1002/humu.23283

    Article  Google Scholar 

  10. Kircher, M., Witten, D.M., Jain, P., O’roak, B.J., Cooper, G.M., and Shendure, J., A general framework for estimating the relative pathogenicity of human genetic variants, Nat. Genet., 2014, vol. 46, no. 3, pp. 310–315. https://doi.org/10.1038/ng.2892

    Article  Google Scholar 

  11. Schwarz, J.M., Cooper, D.N., Schuelke, M., and Seelow, D., MutationTaster2: Mutation prediction for the deep-sequencing age, Nat. Methods, 2014, vol. 11, no. 4, pp. 361–362. https://doi.org/10.1038/nmeth.2890

    Article  Google Scholar 

  12. Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S., and Sunyaev, S.R., A method and server for predicting damaging missense mutations, Nat. Methods, 2010, vol. 7, no. 4, pp. 248–249. https://doi.org/10.1038/nmeth0410-248

    Article  Google Scholar 

  13. Poplin, R., Chang, P.-Ch., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., Newburger, D., Dijamco, J., Nguyen, N., Afshar, P.T., Gross, S.S., Dorfman, L., Mclean, C.Y., and Depristo, M.A., A universal SNP and small-indel variant caller using deep neural networks, Nat. Biotechnol., 2018, vol. 36, no. 10, pp. 983–987. https://doi.org/10.1038/nbt.4235

    Article  Google Scholar 

  14. Luo, R., Sedlazeck, F.J., Lam, T.-W., and Schatz, M.C., A multi-task convolutional deep neural network for variant calling in single molecule sequencing, Nat. Commun., 2019, vol. 10, no. 1, p. 998. https://doi.org/10.1038/s41467-019-09025-z

    Article  Google Scholar 

  15. Ravasio, V., Ritelli, M., Legati, A., and Giacopuzzi, E., GARFIELD-NGS: Genomic variants filtering by deep learning models in NGS, Bioinformatics, 2018, vol. 34, no. 17, pp. 3038–3040. https://doi.org/10.1093/bioinformatics/bty303

    Article  Google Scholar 

  16. Singh, A. and Bhatia, P., Intelli-NGS: Intelligent NGS, a deep neural network-based artificial intelligence to delineate good and bad variant calls from IonTorrent sequencer data, bioRxiv, 2019. https://doi.org/10.1101/2019.12.17.879403

  17. Gupta, G. and Saini, S., DAVI: Deep learning-based tool for alignment and single nucleotide variant identification, Mach. Learn.: Sci. Technol., 2020, vol. 1, no. 2, p. 025013. https://doi.org/10.1088/2632-2153/ab7e19

    Article  Google Scholar 

  18. Cai, L., Wu, Yu., and Gao, J., DeepSV: Accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network, BMC Bioinf., 2019, vol. 20, no. 1, p. 665. https://doi.org/10.1186/s12859-019-3299-y

    Article  Google Scholar 

  19. Zhang, Yu., Jin, L., Wang, B., Hu, D., Wang, L., Li, P., Zhang, J., Han, K., Tian, G., Yuan, D., Yang, J., Tan, W., Xing, X., and Lang, J., DL-CNV: A deep learning method for identifying copy number variations based on next generation target sequencing, Math. Biosci.s Eng., 2020, vol. 17, no. 1, pp. 202–215. https://doi.org/10.3934/mbe.2020011

    Article  MathSciNet  Google Scholar 

  20. Friedman, S., Gauthier, L., Farjoun, Yo., and Banks, E., Lean and deep models for more accurate filtering of SNP and INDEL variant calls, Bioinformatics, 2020, vol. 36, no. 7, pp. 2060–2067. https://doi.org/10.1093/bioinformatics/btz901

    Article  Google Scholar 

  21. Liu, Yo., Huang, Ya., Wang, G., and Wang, Ya., A deep learning approach for filtering structural variants in short read sequencing data, Briefings Bioinf., 2021, vol. 22, no. 4, p. bbaa370. https://doi.org/10.1093/bib/bbaa370

  22. Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., and Korbel, J.O., DELLY: Structural variant discovery by integrated paired-end and split-read analysis, Bioinformatics, 2012, vol. 28, no. 18, pp. i333–i339. https://doi.org/10.1093/bioinformatics/bts378

    Article  Google Scholar 

  23. Layer, R.M., Chiang, C., Quinlan, A.R., and Hall, I.M., LUMPY: A probabilistic framework for structural variant discovery, Genome Biol., 2014, vol. 15, no. 6, p. R84. https://doi.org/10.1186/gb-2014-15-6-r84

    Article  Google Scholar 

  24. He, K., Zhang, X., Ren, S., and Sun, J., Deep residual learning for image recognition, 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016, pp. 770–778. https://doi.org/10.1109/cvpr.2016.90

  25. Woo, S., Park, J., Lee, J.-Yo., and Kweon, I.S., CBAM: Convolutional block attention module, Computer Vision–ECCV 2018, Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., Eds., Lecture Notes in Computer Science, vol. 11211, Cham: Springer, 2018, pp. 3–19. https://doi.org/10.1007/978-3-030-01234-2_1

  26. Liu, Y., Shao, Z., and Hoffmann, N., Global attention mechanism: Retain information to enhance channel-spatial interactions, arXiv Preprint, 2021. https://doi.org/10.48550/arXiv.2112.05561

  27. Zhang, X., Zhou, X., Lin, M., and Sun, J., ShuffleNet: An extremely efficient convolutional neural network for mobile devices, 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, Utah, 2018, IEEE, 2018, pp. 6848–6856. https://doi.org/10.1109/cvpr.2018.00716

  28. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv Preprint, 2020. https://doi.org/10.48550/arXiv.2010.11929

  29. Krizhevsky, A., Sutskever, I., and Hinton, G.E., ImageNet classification with deep convolutional neural networks, Commun. ACM, 2017, vol. 60, no. 6, pp. 84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  30. Sokooti, H., de Vos, B., Berendsen, F., Ghafoorian, M., Yousefi, S., Lelieveldt, B.P.F., Isgum, I., and Staring, M., 3D convolutional neural networks image registration based on efficient supervised learning from artificial deformations, arXiv Preprint, 2019. https://doi.org/10.48550/arXiv.1908.10235

  31. Szegedy, C., Liu, W., Jia, Ya., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A., Going deeper with convolutions, 2015 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, 2015, IEEE, 2015, pp. 1–9. https://doi.org/10.1109/cvpr.2015.7298594

  32. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H., Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv Preprint, 2017. https://doi.org/10.48550/arXiv.1704.04861

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Yang.

Ethics declarations

We all declare that we have no conflict of interest in this paper.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai Yang, Kao, W., Li, J. et al. ResNet Combined with Attention Mechanism for Genomic Deletion Variant Prediction. Aut. Control Comp. Sci. 58, 252–264 (2024). https://doi.org/10.3103/S0146411624700147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411624700147

Keywords: