Skip to main content
Log in

Tasks in Named Entity Recognition: Technologies and Tools

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract

The task of named entity recognition (NER) is to identify and classify words and phrases denoting named entities (NEs), such as people, organizations, geographical names, dates, events, and terms from subject areas. While searching for the best solution, researchers conduct a wide range of experiments with different technologies and input data. A comparison of the results of these experiments shows a significant discrepancy in the quality of NER and poses the problem of determining the conditions and limitations for the application of the used technologies, as well as finding new solutions. An important part in answering these questions is the systematization and analysis of current research and the publication of relevant reviews. In the field of NE recognition, the authors of analytical articles primarily consider mathematical methods of identification and classification and do not pay attention to the specifics of the problem itself. In this survey, the field of NE recognition is considered from the point of view of individual task categories. The authors identify five categories: the classical task of NER, NER subtasks, NER in social media, NER in domain, and NER in natural language processing (NLP) tasks. For each category the authors discuss the quality of the solution, features of the methods, problems, and limitations. Information about current scientific works of each category is given in the form of a table for clarity. This review allows us to draw a number of conclusions. Deep learning methods are the leading methods among state-of-the-art technologies. The main problems are the lack of datasets in open access, strict requirements for computing resources, and the lack of error analysis. A promising area of research in NER is the development of methods based on unsupervised techniques or rule-based learning. Intensively developing language models in existing NLP tools can serve as a possible basis for text preprocessing for NER methods. The article ends with a description and results of experiments with NER tools for Russian-language texts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.

Notes

  1. https://github.com/natasha/nerus.

  2. https://github.com/yarfruct/ner-russian-language-experiments.

REFERENCES

  1. Grishman, R. and Sundheim, B., Message Understanding Conference-6: A brief history, Proc. 16th Conf. on Computational Linguistics, Copenhagen, 1996, Stroudsburg, Pa.: Association for Computational Linguistics, 1996, vol. 1, pp. 466–471. https://doi.org/10.3115/992628.992709

  2. Nadeau, D. and Sekine, S., A survey of named entity recognition and classification, Lingvisticae Invest., 2007, vol. 30, no. 1, pp. 3–26. https://doi.org/10.1075/li.30.1.03nad

    Article  MATH  Google Scholar 

  3. Sharnagat, R., Named entity recognition: A literature survey, Center for Indian Language Technology, 2014, pp. 1–27.

    MATH  Google Scholar 

  4. Li, J., Sun, A., Han, J., and Li, Ch., A survey on deep learning for named entity recognition, IEEE Trans. Knowl. Data Eng., 2022, vol. 34, no. 1, pp. 50–70. https://doi.org/10.1109/tkde.2020.2981314

    Article  MATH  Google Scholar 

  5. Popovski, G., Seljak, B.K., and Eftimov, T., A survey of named-entity recognition methods for food information extraction, IEEE Access, 2020, vol. 8, pp. 31586–31594. https://doi.org/10.1109/access.2020.2973502

    Article  Google Scholar 

  6. Piskorski, J., Babych, B., Kancheva, Z., Kanishcheva, O., Lebedeva, M., Marcińczuk, M., Nakov, P., Osenova, P., Pivovarova, L., Pollak, S., Přibáň, P., Radev, I., Robnik-Sikonja, M., Starko, V., Steinberger, J., and Yangarber, R., Slav-NER: The 3rd Cross-lingual Challenge on Recognition, Normalization, Classification, and Linking of Named Entities across Slavic Languages, Proc. 8th Workshop on Balto-Slavic Natural Language Processing, Kiyv, Ukraine, Babych, B., Kanishcheva, O., Nakov, P., Piskorski, J., Pivovarova, L., Starko, V., Steinberger, J., Yangarber, R., Marcińczuk, M., Pollak, S., Přibáň, P., and Robnik-Šikonja, M., Eds., Association for Computational Linguistics, 2021, pp. 122–133. https://aclanthology.org/2021.bsnlp-1.15.

  7. Starostin, A.S., Dzhumaev, S.S., Smurov, I.M., Bocharov, V.V., Alexeeva, S.V., Bodrova, A.A., Chuchunkov, A.S., Granovsky, D.V., Krylova, I.V., Nikoaeva, M.A., Efimenko, I.V., Khoroshevsky, V.F., and Toldova, S.Y., FactRuEval 2016: Evaluation of named entity recognition and fact extraction systems for Russian, Computational Linguistics and Intellectual Technologies: Proc. Int. Conf. Dialogue 2016, Moscow, 2016, 2016, pp. 702–720. https://elibrary.ru/xmpqbt.

  8. Jiang, Yu., Hu, Ch., Xiao, T., Zhang, Ch., and Zhu, J., Improved differentiable architecture search for language modeling and named entity recognition, Proc. 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Int. Joint Conf. on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, 2019, Inui, K., Jiang, J., Ng, V., and Wan, X., Eds., Association for Computational Linguistics, 2019, pp. 3585–3590. https://doi.org/10.18653/v1/d19-1367

  9. Speck, R. and Ngonga Ngomo, A.-C., Ensemble learning for named entity recognition, The Semantic Web–ISWC 2014, Mika, P., Tudorache, T., Bernstein, A., Welty, Ch., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., and Goble, C., Eds., Lecture Notes in Computer Science, vol. 8796, Cham: Springer, 2014, pp. 519–534. https://doi.org/10.1007/978-3-319-11964-9_33

  10. Ghaddar, A. and Langlais, P., Robust lexical features for improved neural network named-entity recognition, Proc. 27th Int. Conf. on Computational Linguistics, Santa Fe, N.M., 2018, Emily M. Bender, Leon. Derczynski., P.I., Ed., Association for Computational Linguistics, 2018, pp. 1896–1907. https://aclanthology.org/C18-1161.

  11. Akbik, A., Bergmann, T., and Vollgraf, R., Pooled contextualized embeddings for named entity recognition, Proc. 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minn., 2019, Burstein, J., Doran, Ch., and Solorio, T., Eds., Association for Computational Linguistics, 2019, vol. 1, pp. 724–728. https://doi.org/10.18653/v1/n19-1078

  12. Riedl, M. and Padó, S., A named entity recognition shootout for German, Proc. 56th Annu. Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018, Gurevych, I. and Miyao, Yu., Eds., Association for Computational Linguistics, 2018, vol. 2, pp. 120–125. https://doi.org/10.18653/v1/p18-2020

  13. Luz De Araujo, P.H., De Campos, T.E., De Oliveira, R.R.R., Stauffer, M., Couto, S., and Bermejo, P., LeNER-Br: A dataset for named entity recognition in Brazilian legal text, Computational Processing of the Portuguese Language. PROPOR 2018, Villavicencio, A., Moreira, V., Abad, A., Caseli, H., Gamallo, P., Ramisch, C., Oliveira, H.G., and Paetzold, G.H., Eds., Lecture Notes in Computer Science, vol. 11122, Cham: Springer, 2018, pp. 313–323. https://doi.org/10.1007/978-3-319-99722-3_32

  14. Luo, Yi., Xiao, F., and Zhao, H., Hierarchical contextualized representation for named entity recognition, Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 5, pp. 8441–8448. https://doi.org/10.1609/aaai.v34i05.6363

  15. Eligüzel, N., Çetinkaya, C., and Dereli, T., Application of named entity recognition on tweets during earthquake disaster: A deep learning-based approach, Soft Comput., 2022, vol. 26, no. 1, pp. 395–421. https://doi.org/10.1007/s00500-021-06370-4

    Article  MATH  Google Scholar 

  16. Le, Th.A., Arkhipov, M.Y., and Burtsev, M.S., Application of a hybrid Bi-LSTM-CRF model to the task of Russian named entity recognition, Artificial Intelligence and Natural Language. AINL 2017, Filchenkov, A., Pivovarova, L., and Žižka, J., Eds., Communications in Computer and Information Science, vol. 789, Cham: Springer, 2017, pp. 91–103.

  17. Hvingelby, R., Pauli, A.B., Barre, M., Rosted, C., Lidegaard, L.M., and Søgaard, A., DaNE: A named entity resource for Danish, Proc. 12th Language Resources and Evaluation Conf., Marseille, 2020, Calzolari, N., Béchet, F., Blache, P., Choukri, Kh., Cieri, Ch., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., and Piperidis, S., Eds., European Language Resources Association, 2020, pp. 4597–4604. https://aclanthology.org/2020.lrec-1.565.

  18. Arkhipov, M., Trofimova, M., Kuratov, Yu., and Sorokin, A., Tuning multilingual transformers for named entity recognition on slavic languages, Proc. 7th Workshop on Balto-Slavic Natural Language Processing, Florence, 2019, Erjavec, T., Marcińczuk, M., Nakov, P., Piskorski, J., Pivovarova, L., Šnajder, J., Steinberger, J., and Yangarber, R., Eds., Association for Computational Linguistics, 2019, pp. 89–93. https://doi.org/10.18653/v1/W19-3712

  19. Piskorski, J., Laskova, L., Marcińczuk, M., Pivovarova, L., Přibáň, P., Steinberger, J., and Yangarber, R., The Second Cross-Lingual Challenge on Recognition, Normalization, Classification, and Linking of Named Entities across Slavic Languages, Proc. 7th Workshop on Balto-Slavic Natural Language Processing, Florence, 2019, Erjavec, T., Marcińczuk, M., Nakov, P., Piskorski, J., Pivovarova, L., Šnajder, J., Steinberger, J., and Yangarber, R., Eds., Association for Computational Linguistics, 2019, pp. 63–74. https://doi.org/10.18653/v1/w19-3709

  20. Helwe, C., Dib, G., Shamas, M., and Elbassuoni, S., A semi-supervised BERT approach for Arabic named entity recognition, Proc. Fifth Arabic Natural Language Processing Workshop, Barcelona, 2020, Zitouni, I., Abdul-Mageed, M., Bouamor, H., Bougares, F., El-Haj, M., Tomeh, N., and Zaghouani, W., Eds., Association for Computational Linguistics, 2020, pp. 49–57. https://aclanthology.org/2020.wanlp-1.5.

  21. Liang, Ch., Yu, Yu., Jiang, H., Er, S., Wang, R., Zhao, T., and Zhang, Ch., BOND: BERT-assisted open-domain named entity recognition with distant supervision, Proc. 26th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, New York: Association for Computing Machinery, 2020, pp. 1054–1064. https://doi.org/10.1145/3394486.3403149

  22. Oliveira, E., Dias, G., Lima, J., and Pirovani, J.P.C., Using named entities for recognizing family relationships, Anais do IX Symp. on Knowledge Discovery, Mining and Learning (KDMiLe 2021), Rio de Janeiro, 2021, Porto Alegre, Brazil: Sociedade Brasileira de Computação, 2021, pp. 24–32. https://doi.org/10.5753/kdmile.2021.17457

  23. Yeniterzi, R., Tür, G., and Oflazer, K., Turkish named-entity recognition, Turkish Natural Language Processing, Oflazer, K. and Saraçlar, M., Eds., Cham: Springer, 2018, pp. 115–132. https://doi.org/10.1007/978-3-319-90165-7_6

  24. Ruokolainen, T., Kauppinen, P., Silfverberg, M., and Lindén, K., A Finnish news corpus for named entity recognition, Lang. Resour. Eval., 2020, vol. 54, no. 1, pp. 247–272. https://doi.org/10.1007/s10579-019-09471-7

    Article  MATH  Google Scholar 

  25. Fu, Yi., Lin, N., Yang, Zh., and Jiang, Sh., Towards Malay named entity recognition: An open-source dataset and a multi-task framework, Connection Sci., 2022, vol. 35, no. 1, p. 2159014. https://doi.org/10.1080/09540091.2022.2159014

    Article  Google Scholar 

  26. Ju, M., Miwa, M., and Ananiadou, S., A neural layered model for nested named entity recognition, Proc. 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, 2018, Walker, M., Ji, H., and Stent, A., Eds., Association for Computational Linguistics, 2018, vol. 1, pp. 1446–1459. https://doi.org/10.18653/v1/n18-1131

  27. Xia, C., Zhang, Ch., Yang, T., Li, Ya., Du, N., Wu, X., Fan, W., Ma, F., and Yu, P., Multi-grained named entity recognition, Proc. 57th Annu. Meeting of the Association for Computational Linguistics, Florence, 2019, Korhonen, A., Traum, D., and Màrquez, L., Eds., Association for Computational Linguistics, 2019, pp. 1430–1440. https://doi.org/10.18653/v1/p19-1138

  28. Wan, J., Ru, D., Zhang, W., and Yu, Yo., Nested named entity recognition with span-level graphs, Proc. 60th Annu. Meeting of the Association for Computational Linguistics, Dublin, 2022, Muresan, S., Nakov, P., and Villavicencio, A., Eds., Association for Computational Linguistics, 2022, vol. 1, pp. 892–903. https://doi.org/10.18653/v1/2022.acl-long.63

  29. Yu, J., Bohnet, B., and Poesio, M., Named entity recognition as dependency parsing, Proc. 58th Annu. Meeting of the Association for Computational Linguistics, Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J., Eds., Association for Computational Linguistics, 2020, pp. 6470–6476. https://doi.org/10.18653/v1/2020.acl-main.577

  30. Sohrab, M.G. and Miwa, M., Deep exhaustive model for nested named entity recognition, Proc. 2018 Conf. on Empirical Methods in Natural Language Processing, Brussels, 2018, Riloff, E., Chiang, D., Hockenmaier, J., and Tsujii, J., Eds., Association for Computational Linguistics, 2018, pp. 2843–2849. https://doi.org/10.18653/v1/d18-1309

  31. Li, J., Ye, D., and Shang, Sh., Adversarial transfer for named entity boundary detection with pointer networks, Proc. Twenty-Eighth Int. Joint Conf. on Artificial Intelligence, Int. Joint Conf. on Artificial Intelligence Organization, 2019, pp. 5053–5059. https://doi.org/10.24963/ijcai.2019/702

  32. Bareket, D. and Tsarfaty, R., Neural modeling for named entities and morphology (NEMO2), Trans. Assoc. Comput. Linguist., 2021, vol. 9, pp. 909–928. https://doi.org/10.1162/tacl_a_00404

    Article  MATH  Google Scholar 

  33. Jeon, S.H. and Cho, S., Edge weight updating neural network for named entity normalization, Neural Process. Lett., 2022, vol. 55, no. 5, pp. 5597–5618. https://doi.org/10.1007/s11063-022-11102-2

    Article  MATH  Google Scholar 

  34. Zhou, D. and Liu, T., Joint model of biomedical entity recognition and normalization labels based on self-attention, Proc. SPIE, 2022, vol. 12474, pp. 461–466. https://doi.org/10.1117/12.2653583

    Article  MATH  Google Scholar 

  35. Fritzler, A., Logacheva, V., and Kretov, M., Few-shot classification in named entity recognition task, Proc. 34th ACM/SIGAPP Symp. on Applied Computing, Limassol, Cyprus, 2019, New York: Association for Computing Machinery, 2019, pp. 993–1000. https://doi.org/10.1145/3297280.3297378

  36. Finkel, J.R. and Manning, Ch.D., Nested named entity recognition, Proc. 2009 Conf. on Empirical Methods in Natural Language Processing, Singapore, 2009, Stroudsburg, Pa.: Association for Computational Linguistics, 2009, vol. 1, pp. 141–150. https://doi.org/10.3115/1699510.1699529

  37. Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L., Deep contextualized word representations, Proc. 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, 2018, Walker, M., Ji, H., and Stent, A., Eds., 2018, vol. 1, pp. 2227–2237. https://doi.org/10.18653/v1/N18-1202

  38. Ghaddar, A., Langlais, P., Rashid, A., and Rezagholizadeh, M., Context-aware adversarial training for name regularity bias in named entity recognition, Trans. Assoc. Comput. Linguist., 2021, vol. 9, pp. 586–604. https://doi.org/10.1162/tacl_a_00386

    Article  Google Scholar 

  39. Nie, Yu., Tian, Yu., Song, Ya., Ao, X., and Wan, X., Improving named entity recognition with attentive ensemble of syntactic information, Findings of the Association for Computational Linguistics: EMNLP 2020, Cohn, T., He, Yu., and Liu, Ya., Eds., Association for Computational Linguistics, 2020, pp. 4231–4245. https://doi.org/10.18653/v1/2020.findings-emnlp.378

  40. Aguilar, G., Maharjan, S., López Monroy, A.P., and Solorio, T., A multi-task approach for named entity recognition in social media data, Proc. 3rd Workshop on Noisy User-Generated Text, Copenhagen, 2017, Derczynski, L., Xu, W., Ritter, A., and Baldwin, T., Eds., Association for Computational Linguistics, 2017, pp. 148–153. https://doi.org/10.18653/v1/w17-4419

  41. Zhang, Q., Fu, J., Liu, X., and Huang, X., Adaptive co-attention network for named entity recognition in tweets, Proc. AAAI Conf. Artif. Intell., 2018, vol. 32, no. 1, pp. 5674–5681. https://doi.org/10.1609/aaai.v32i1.11962

  42. Miranda-Escalada, A., Farré-Maduell, E., Lima-López, S., Gascó, L., Briva-Iglesias, V., Agüero-Torales, M., and Krallinger, M., The ProfNER shared task on automatic recognition of occupation mentions in social media: Systems, evaluation, guidelines, embeddings and corpora, Proc. Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task, Mexico City, 2021, Magge, A., Klein, A., Miranda-Escalada, A., Algaradi, M.A., Alimova, I., Miftahutdinov, Z., Farre-Maduell, E., Lopez, S.L., Flores, I., O’Connor, K., Weissenbacher, D., Tutubalina, E., Sarker, A., Banda, J.M., Krallinger, M., and Gonzalez-Hernandez, G., Eds., Association for Computational Linguistics, 2021, pp. 13–20. https://doi.org/10.18653/v1/2021.smm4h-1.3

  43. Asgari-Chenaghlu, M., Feizi-Derakhshi, M.R., Farzinvash, L., Balafar, M.A., and Motamed, C., CWI: A multimodal deep learning approach for named entity recognition from social media using character, word and image features, Neural Comput. Appl., 2021, vol. 34, no. 3, pp. 1905–1922. https://doi.org/10.1007/s00521-021-06488-4

    Article  Google Scholar 

  44. Yu, J., Jiang, J., Yang, L., and Xia, R., Improving multimodal named entity recognition via entity span detection with unified multimodal transformer, Proc. 58th Annu. Meeting of the Association for Computational Linguistics, Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J., Eds., Association for Computational Linguistics, 2020, pp. 3342–3352. https://doi.org/10.18653/v1/2020.acl-main.306

  45. Asgari-Bidhendi, M., Janfada, B., Talab, O.R., and Minaei-Bidgoli, B., ParsNER-Social: A corpus for named entity recognition in persian social media texts, J. AI Data Min., 2021, vol. 9, no. 2, pp. 181–192.

    MATH  Google Scholar 

  46. Priyadharshini, R., Chakravarthi, B.R., Vegupatti, M., and Mccrae, J.P., Named entity recognition for code-mixed Indian corpus using meta embedding, 2020 6th Int. Conf. on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2020, IEEE, 2020, pp. 68–72. https://doi.org/10.1109/icaccs48705.2020.9074379

  47. Phan, M.C. and Sun, A., Collective named entity recognition in user comments via parameterized label propagation, J. Assoc. Inf. Sci. Technol., 2020, vol. 71, no. 5, pp. 568–577. https://doi.org/10.1002/asi.24282

    Article  MATH  Google Scholar 

  48. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I., Attention is all you need, Adv. Neural Inf. Process. Syst., 2017, vol. 30, pp. 6000–6010.

    Google Scholar 

  49. Wang, X., Zhang, Yu., Ren, X., Zhang, Yu., Zitnik, M., Shang, J., Langlotz, C., and Han, J., Cross-type biomedical named entity recognition with deep multi-task learning, Bioinformatics, 2019, vol. 35, no. 10, pp. 1745–1752. https://doi.org/10.1093/bioinformatics/bty869

    Article  MATH  Google Scholar 

  50. Yoon, W., So, Ch.H., Lee, J., and Kang, J., CollaboNet: Collaboration of deep neural networks for biomedical named entity recognition, BMC Bioinf., 2019, vol. 20, no. s10, pp. 55–65. https://doi.org/10.1186/s12859-019-2813-6

    Article  MATH  Google Scholar 

  51. Weber, L., Sänger, M., Münchmeyer, J., Habibi, M., Leser, U., and Akbik, A., HunFlair: An easy-to-use tool for state-of-the-art biomedical named entity recognition, Bioinformatics, 2021, vol. 37, no. 17, pp. 2792–2794. https://doi.org/10.1093/bioinformatics/btab042

    Article  Google Scholar 

  52. Kim, D., Lee, J., So, Ch.H., Jeon, H., Jeong, M., Choi, Yo., Yoon, W., Sung, M., and Kang, J., A neural named entity recognition and multi-type normalization tool for biomedical text mining, IEEE Access, 2019, vol. 7, pp. 73729–73740. https://doi.org/10.1109/access.2019.2920708

    Article  Google Scholar 

  53. Mi, Z., Alimova, I., and Tutubalina, E., On biomedical named entity recognition: Experiments in interlingual transfer for clinical and social media texts, Advances in Information Retrieval. ECIR 2020, Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., and Martins, F., Eds., Lecture Notes in Computer Science, vol. 12036, Springer, 2020, pp. 281–288. https://doi.org/10.1007/978-3-030-45442-5_35

  54. Catelli, R., Gargiulo, F., Casola, V., De Pietro, G., Fujita, H., and Esposito, M., Crosslingual named entity recognition for clinical de-identification applied to a COVID-19 Italian data set, Appl. Soft Comput., 2020, vol. 97, p. 106779. https://doi.org/10.1016/j.asoc.2020.106779

    Article  Google Scholar 

  55. Luo, L., Yang, Zh., Yang, P., Zhang, Yi., Wang, L., Lin, H., and Wang, J., An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition, Bioinformatics, 2018, vol. 34, no. 8, pp. 1381–1388. https://doi.org/10.1093/bioinformatics/btx761

    Article  MATH  Google Scholar 

  56. Hemati, W. and Mehler, A., LSTMVoter: Chemical named entity recognition using a conglomerate of sequence labeling tools, J. Cheminformatics, 2019, vol. 11, no. 1, p. 3. https://doi.org/10.1186/s13321-018-0327-2

    Article  Google Scholar 

  57. Hong, Zh., Tchoua, R., Chard, K., and Foster, I., SciNER: Extracting named entities from scientific literature, Computational Science–ICCS 2020, Krzhizhanovskaya, V.V., Závodszky, G., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., and Teixeira, J., Eds., Lecture Notes in Computer Science, vol. 12138, Cham: Springer, 2020, pp. 308–321. https://doi.org/10.1007/978-3-030-50417-5_23

  58. Weston, L., Tshitoyan, V., Dagdelen, J., Kononova, O., Trewartha, A., Persson, K.A., Ceder, G., and Jain, A., Named entity recognition and normalization applied to large-scale information extraction from the materials science literature, J. Chem. Inf. Model., 2019, vol. 59, no. 9, pp. 3692–3702. https://doi.org/10.1021/acs.jcim.9b00470

    Article  Google Scholar 

  59. Kumar, A. and Starly, B., “FabNER”: Information extraction from manufacturing process science domain literature using named entity recognition, J. Intell. Manuf., 2022, vol. 33, no. 8, pp. 2393–2407. https://doi.org/10.1007/s10845-021-01807-x

    Article  Google Scholar 

  60. Moon, S., Lee, G., Chi, S., and Oh, H., Automated construction specification review with named entity recognition using natural language processing, J. Constr. Eng. Manage., 2021, vol. 147, no. 1, p. 04020147. https://doi.org/10.1061/(asce)co.1943-7862.0001953

    Article  Google Scholar 

  61. Syed, M.H. and Chung, S.-T., MenuNER: Domain-adapted BERT based NER approach for a domain with limited dataset and its application to food menu domain, Appl. Sci., 2021, vol. 11, no. 13, p. 6007. https://doi.org/10.3390/app11136007

    Article  MATH  Google Scholar 

  62. Popovski, G., Kochev, S., Korousic-Seljak, B., and Eftimov, T.E., FoodIE: A rule-based named-entity recognition method for food information extraction, Proc. 8th Int. Conf. on Pattern Recognition Applications and Methods, SCITEPress–Science and Technology Publ., 2019, pp. 915–922. https://doi.org/10.5220/0007686309150922

  63. Li, F.-L., Chen, H., Xu, G., Qiu, T., Ji, F., Zhang, J., and Chen, H., AliMeKG: Domain knowledge graph construction and application in e-commerce, Proc. 29th ACM Int. Conf. on Information & Knowledge Management, New York: Association for Computing Machinery, 2020, pp. 2581–2588. https://doi.org/10.1145/3340531.3412685

  64. Perera, N., Nguyen, T.T.L., Dehmer, M., and Emmert-Streib, F., Comparison of text mining models for food and dietary constituent named-entity recognition, Mach. Learn. Knowl. Extr., 2022, vol. 4, no. 1, pp. 254–275. https://doi.org/10.3390/make4010012

    Article  MATH  Google Scholar 

  65. Eftimov, T., Koroušić Seljak, B., and Korošec, P., A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations, PLoS One, 2017, vol. 12, no. 6, p. e0179488. https://doi.org/10.1371/journal.pone.0179488

    Article  MATH  Google Scholar 

  66. Liu, Z., Luo, M., Yang, H., and Liu, X., Named entity recognition for the horticultural domain, J. Phys.: Conf. Ser., 2020, vol. 1631, no. 1, p. 012016. https://doi.org/10.1088/1742-6596/1631/1/012016

    Article  MATH  Google Scholar 

  67. Kim, G., Lee, Ch., Jo, J., and Lim, H., Automatic extraction of named entities of cyber threats using a deep Bi-LSTM-CRF network, Int. J. Mach. Learn. Cybern., 2020, vol. 11, no. 10, pp. 2341–2355. https://doi.org/10.1007/s13042-020-01122-6

    Article  MATH  Google Scholar 

  68. Zhou, Sh., Liu, J., Zhong, X., and Zhao, W., Named entity recognition using BERT with whole world masking in cybersecurity domain, 2021 IEEE 6th Int. Conf. on Big Data Analytics (ICBDA), Xiamen, China, 2021, IEEE, 2021, pp. 316–320. https://doi.org/10.1109/icbda51983.2021.9403180

  69. Tikhomirov, M., Loukachevitch, N., Sirotina, A., and Dobrov, B., Using BERT and augmentation in named entity recognition for cybersecurity domain, Natural Language Processing and Information Systems, Métais, E., Meziane, F., Horacek, H., and Cimiano, P., Eds., Lecture Notes in Computer Science, vol. 12089, Cham: Springer, 2020, pp. 16–24. https://doi.org/10.1007/978-3-030-51310-8_2

  70. Au, T.W.T., Lampos, V., and Cox, I., E-NER—An annotated named entity recognition corpus of legal text, Proc. Natural Legal Language Processing Workshop 2022, Abu Dhabi, 2022, Aletras, N., Chalkidis, I., Barrett, L., Goanță, C., and Preoțiuc-Pietro, D., Eds., Association for Computational Linguistics, 2022, pp. 246–255. https://doi.org/10.18653/v1/2022.nllp-1.22

  71. Çetindağ, C., Yazıcıoğlu, B., and Koç, A., Named-entity recognition in Turkish legal texts, Nat. Lang. Eng., 2022, vol. 29, no. 3, pp. 615–642. https://doi.org/10.1017/s1351324922000304

    Article  Google Scholar 

  72. Brandsen, A., Verberne, S., Lambers, K., and Wansleeben, M., Can BERT dig it? Named entity recognition for information retrieval in the archaeology domain, J. Comput. Cultural Heritage, 2022, vol. 15, no. 3, p. 51. https://doi.org/10.1145/3497842

    Article  Google Scholar 

  73. Kogkitsidou, E. and Gambette, P., Normalisation of 16th and 17th century texts in French and geographical named entity recognition, Proc. 4th ACM SIGSPATIAL Workshop on Geospatial Humanities, Seattle, Wash., 2020, Moncla, L., Murrieta-Flores, P., and Brando, C., Eds., New York: Association for Computing Machinery, 2020, pp. 28–34. https://doi.org/10.1145/3423337.3429437

  74. Alexander, D. and De Vries, A.P., is research is funded by…”: Named entity recognition of financial information in research papers, CEUR Workshop Proc., 2021, vol. 2847, pp. 102–110. https://ceur-ws.org/Vol-2847/paper-10.pdf.

    MATH  Google Scholar 

  75. Li, J., Shang, Sh., and Shao, L., MetaNER: Named entity recognition with meta-learning, Proc. Web Conf. 2020, Taipei, 2020, Huang, Ye., King, I., Liu, T.-Ya., and van Steen, M., Eds., New York: Association for Computing Machinery, 2020, pp. 429–440. https://doi.org/10.1145/3366423.3380127

  76. Nie, B., Li, Ch., and Wang, H., KA-NER: Knowledge augmented named entity recognition, Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction, Qin, B., Jin, Z., Wang, H., Pan, J., Liu, Y., and An, B., Eds., Communications in Computer and Information Science, vol. 1466, Singapore: Springer, 2021, pp. 60–75. https://doi.org/10.1007/978-981-16-6471-7_5

  77. Lin, B.-S., Chen, J.-H., and Chang, T.-H., NERVE at ROCLING 2022 shared task: A comparison of three named entity recognition frameworks based on language model and lexicon approach, Proc. 34th Conf. on Computational Linguistics and Speech Processing, Taipei, 2022, Chang, Yu.-Ch. and Huan, Yi-Ch., Eds., The Association for Computational Linguistics and Chinese Language Processing, 2022, pp. 343–349.

  78. Isazawa, T. and Cole, J.M., Single model for organic and inorganic chemical named entity recognition in chemdataextractor, J. Chem. Inf. Model., 2022, vol. 62, no. 5, pp. 1207–1213. https://doi.org/10.1021/acs.jcim.1c01199

    Article  Google Scholar 

  79. Singh, B., Marathe, A., Rizvi, A.A., and Joshi, A.R., Retaining named entities for headline generation, Inventive Computation and Information Technologies, Smys, S., Balas, V.E., Kamel, K.A., and Lafata, P., Eds., Lecture Notes in Networks and Systems, vol. 173, Singapore: Springer, 2021, pp. 221–234. https://doi.org/10.1007/978-981-33-4305-4_17

  80. Ji, Yu., Tong, Ch., Liang, J., Yang, X., Zhao, Zh., and Wang, X., A deep learning method for named entity recognition in bidding document, J. Phys.: Conf. Ser., 2019, vol. 1168, p. 032076. https://doi.org/10.1088/1742-6596/1168/3/032076

    Article  Google Scholar 

  81. Makeev, S.M., Shekshuev, S.V., Petrov, M.G., and Zyuzin, S.D., Natural language processing module based on a trained neural network model with a named entity search engine, Izv. Tul. Gos. Univ., Tekh. Nauki, 2022, no. 9, pp. 56–64. https://doi.org/10.24412/2071-6168-2022-9-56-64

  82. Krasnashchok, K. and Jouili, S., Improving topic quality by promoting named entities in topic modeling, Proc. 56th Annu. Meeting of the Association for Computational Linguistics, Melbourne, 2018, Gurevych, I. and Miyao, Yu., Eds., Association for Computational Linguistics, 2018, vol. 2, pp. 247–253. https://doi.org/10.18653/v1/p18-2040

  83. Kumar, A. and Starly, B., “FabNER”: Information extraction from manufacturing process science domain literature using named entity recognition, J. Intell. Manuf., 2021, vol. 33, no. 8, pp. 2393–2407. https://doi.org/10.1007/s10845-021-01807-x

    Article  Google Scholar 

  84. Siekmeier, A., Lee, W., Kwon, H., and Lee, J.-H., Tag assisted neural machine translation of film subtitles, Proc. 18th Int. Conf. on Spoken Language Translation (IWSLT 2021), Bangkok, 2021, Federico, M., Waibel, A., Costa-Jussà, M.R., Niehues, J., Stuker, S., and Salesky, E., Eds., Association for Computational Linguistics, 2021, pp. 255–262. https://doi.org/10.18653/v1/2021.iwslt-1.30

  85. Ding, J., Sun, H., Wang, X., and Liu, X., Entity-level sentiment analysis of issue comments, Proc. 3rd Int. Workshop on Emotion Awareness in Software Engineering, Gothenburg, Sweden, 2018, New York: Association for Computing Machinery, 2018, pp. 7–13. https://doi.org/10.1145/3194932.3194935

  86. Yu, J., Jiang, J., and Xia, R., Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification, IEEE/ACM Trans. Audio, Speech, Lang. Process., 2019, vol. 28, pp. 429–439. https://doi.org/10.1109/taslp.2019.2957872

    Article  MATH  Google Scholar 

  87. Guven, Z.A. and Unalir, M.O., Improving the BERT model with proposed named entity recognition method for question answering, 2021 6th Int. Conf. on Computer Science and Engineering (UBMK), Ankara, 2021, IEEE, 2021, pp. 204–208. https://doi.org/10.1109/ubmk52708.2021.9558992

  88. Kleinberg, B., Mozes, M., Arntz, A., and Verschuere, B., Using Named Entities For Computer-Automated Verbal Deception Detection, J. Forensic Sci., 2018, vol. 63, no. 3, pp. 714–723. https://doi.org/10.1111/1556-4029.13645

    Article  Google Scholar 

  89. Honnibal, M., Montani, I., Van Landeghem, S., and Boyd, A., spaCy: Industrial-strength natural language processing in Python, Zenodo, 2020. https://doi.org/10.5281/zenodo.1212303

  90. Qi, P., Zhang, Yu., Zhang, Yu., Bolton, J., and Manning, Ch.D., Stanza: A python natural language processing toolkit for many human languages, Proc. 58th Annu. Meeting of the Association for Computational Linguistics: System Demonstrations, Celikyilmaz, A. and Wen, T.-H., Eds., Association for Computational Linguistics, 2020, pp. 101–108. https://doi.org/10.18653/v1/2020.acl-demos.14

  91. Nothman, J., Ringland, N., Radford, W., Murphy, T., and Curran, J.R., Learning multilingual named entity recognition from Wikipedia, Artif. Intell., 2013, vol. 194, pp. 151–175. https://doi.org/10.1016/j.artint.2012.03.006

    Article  MathSciNet  MATH  Google Scholar 

  92. Burtsev, M.S., Seliverstov, A.V., Airapetyan, R., Arkhipov, M., Baymurzina, D., Bushkov, N., Gureenkova, O., Khakhulin, T., Kuratov, Y., Kuznetsov, D., Litinsky, A., Logacheva, V., Lymar, A., Malykh, V., Petrov, M., Polulyakh, V., Pugachev, L., Sorokin, A., Vikhreva, M., and Zaynutdinov, M., DeepPavlov: Open-source library for dialogue systems, Proc. ACL 2018, System Demonstrations, Melbourne, Australia, 2018, Liu, F. and Solorio, T., Eds., Association for Computational Linguistics, 2018, pp. 122–127. https://doi.org/10.18653/v1/P18-4021

  93. Mozharova, V. and Loukachevitch, N., Two-stage approach in Russian named entity recognition, 2016 Int. FRUCT Conf. on Intelligence, Social Media and Web (ISMW FRUCT), St. Petersburg, 2016, IEEE, 2016, pp. 1–6. https://doi.org/10.1109/fruct.2016.7584769

Download references

Funding

This study was supported by the VIP-016 initiative program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. S. Lagutina, A. M. Vasilyev or D. D. Zafievsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AI tools may have been used in the translation or editing of this article.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagutina, N.S., Vasilyev, A.M. & Zafievsky, D.D. Tasks in Named Entity Recognition: Technologies and Tools. Aut. Control Comp. Sci. 58, 779–796 (2024). https://doi.org/10.3103/S0146411624700251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411624700251

Keywords: