As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper describes a novel method for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak detection, in which the agents are patients who are modeled as independent, conditioned on the factors that cause disease spread. Given evidence about these patients, such as their symptoms, suppose that the BN system infers that a respiratory anthrax outbreak is highly likely. A public-health official who received such a report would generally want to know why anthrax is being given a high posterior probability. This paper describes the design of a system that explains such inferences. The explanation approach is applicable in general to inference in BNs that model conditionally independent agents; it complements previous approaches for explaining inference on BNs that model a single agent (e.g., explaining the diagnostic inference for a single patient using a BN that models just that patient).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.