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Abstract. In this paper we attempt to identify eviction judgements within all case
law published by Dutch courts in order to automate data collection, previously
conducted manually. To do so we performed two experiments. The first focused on
identifying judgements related to eviction, while the second focused on identifying
the outcome of the cases in the judgements (eviction vs. dismissal of the landlord’s
claim). In the process of conducting the experiments for this study, we have created
a manually annotated dataset with eviction-related judgements and their outcomes.
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1. Introduction

Legal scholars and practitioners are confronted with an enormous and expanding body of
case law. For example, in the Netherlands the judiciary dealt with over 1.3 million cases
in 2020 alone.2 Many of these cases involve bulk cases on, for example, family law or
labour law. Another area that results in a considerable number of bulk cases is landlord-
tenant law. It is estimated that courts have to decide whether or not a tenant needs to be
evicted in nearly 20.000 cases every year (1). The Dutch judiciary does not publish all
judgements online, but a significant number of cases can be found online in the Open
Data van de Rechtspraak dataset.3 Traditionally, legal scholars and practitioners collect
and analyse these cases manually (2). Of course, this is time-consuming and will become
impossible due to the increasing amount of published case law online.4

In this paper we are trying to solve this legal research problem. Specifically, we want
to identify judgements concerning eviction within all judgements published by the Dutch
judiciary and extract their outcome from the text (i.e. eviction/non-eviction). This work
builds upon existing research that until now has been done manually (3), and our goal is
to test how much of the data collection and outcome extraction can be automated. Some

1Corresponding Author. E-mail: m.medvedeva@rug.nl
2https://www.rechtspraak.nl/Organisatie-en-contact/Rechtspraak-in-Nederland/

Rechtspraak-in-cijfers (Dutch)
3https://www.rechtspraak.nl/Uitspraken/Paginas/Selectiecriteria.aspx (Dutch)
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of the case law under review has already been annotated by hand and can be used for
training machine learning systems.

In this paper, we use ‘judgement’ to denote the text of a published judgement. The
word ‘outcome’, and its synonyms ‘verdict’ and ‘decision’, are used to define a specific
closed class (i.e. a limited number) of labels for verdicts. An example of an outcomes is
eviction or non-eviction in the landlord-tenant law context.

2. Related work

This paper deals with the identification of the topic of a judgement (i.e. an eviction case
or a non-eviction case). To our knowledge, the number of publications dealing with au-
tomatically identifying the topic of a case for dataset creation is limited. Some similar
work involves topic modelling techniques that allow one to identify and cluster multiple
topics at once (4; 5; 6), and using document similarity to find the documents that deal
with similar issues (7; 8), both of which can be particularly hard to evaluate.

Besides the identification of the topic of a judgement, this paper concerns outcome
identification (i.e. the extraction of the outcome from the full text). This identification
task can be useful in itself, for instance if one wants to know the statistics of cases
concerning eviction actually ending in a tenant being evicted.

Depending on the court, identifying the outcome can be more or less complicated.
Some courts publish their judgements with meta-data stating the outcome (e.g., the Eu-
ropean Court of Human Rights). As a result, one just needs to extract this information in
order to get the outcomes. While in other judgements, the wording of the outcome may
be standardised and therefore easy to extract (e.g., “The Court of Appeal therefore af-
firms the decision of the Court of First Instance.”), the majority of courts seem to formu-
late their decisions in free-form natural language, making the task of extracting a specific
outcome a more complex task.

There is a small number of studies focusing specifically on identifying the outcome
within the judgements. Recent papers extracted outcomes from Appellate Decisions in
US State courts (9; F1-score: 0.82), US federal court dockets (10; recall up to 0.96) as
well as French courts (11; F1-scores: 0.8-1.0) using various machine learning methods.
In this paper we compare the performance of a simpler keyword-search approach (not
requiring annotated data) to a simple machine learning system.

3. Data

For our dataset we rely upon the Open Data van de Rechtspraak,5 an official, publicly
available, database of the judiciary of the Netherlands. Not all Dutch case law is pub-
lished online, but merely a subset of judgements that De Rechtspraak allows for publica-
tion. Unfortunately, exact criteria are not available to the public, though some guidance
is provided by a dedicated page on their website.6 The Open Data van de Rechtspraak
dataset can be downloaded as one large file archive (>4GB) of XML files containing the
texts of the judgements as well as some basic meta-data (e.g., court, date).

5https://www.rechtspraak.nl (Dutch)
6https://www.rechtspraak.nl/Uitspraken/Paginas/Selectiecriteria.aspx (Dutch)
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For this paper, we are specifically interested in the cases of the courts of first instance
(rechtbanken). A collection of 591 eviction cases between 2000 and 2020 (manually col-
lected and annotated, including the verdicts: eviction or non-eviction) from the courts
of first instance was already available (based on existing research from our lab). This
dataset was compiled in such a way that it should include the large majority of all pub-
lished eviction cases between 2000 and 2020. As this dataset only contains a relatively
limited number of eviction cases, and no non-eviction cases, we aimed to supplement
it by including both cases about eviction, and cases on other topics, but still somewhat
related to the subject matter. This was to ensure the task was useful and not trivial, and
that we had a larger dataset to train the system.

To increase the likelihood of identifying eviction cases, we used the following proce-
dure. We extracted all (2,641,946) judgements from the Open Data van de Rechtspraak
dataset between the years 2000 and 2020. From this set, we only included judgements
from the courts of first instance, and furthermore selected the judgements that contain at
least one of the following words huurovereenkomst (rental agreement), ontruiming (evic-
tion) or woning (home). Subsequently, we narrowed down the selection by only retaining
judgements with the label “private law”, which is the appropriate label for eviction cases.
These relatively simple filters allowed us to reduce the amount of judgements to 24,268
cases. Unfortunately, this number was still rather large. Consequently, we made a further
reduction by only including cases from 2016-2018, and excluding cases already included
in the original set of 591 cases of the original set, yielding a set of 4,795 judgements.
From this set, we randomly sampled 69 judgements (1 hour of manual annotation) to
assess the proportion of cases related to eviction. A manual inspection showed that more
than half of the judgements (37) were eviction cases. This suggests that our manually cu-
rated dataset of 591 eviction cases was missing a substantial amount of eviction-related
cases.

To increase the amount of data, we took all 591 manually annotated eviction judge-
ments, and we again randomly sampled from the 2016-2018 judgements, extracting twice
the amount (1182) of manually annotated eviction judgements. We then built a sim-
ple three-fold cross-validation support vector machine (SVM) only using 1-3 n-grams
(i.e. sequences of one to three words from the text of the judgement) as features. When
training the model, we treated the 591 judgements as eviction cases and the 1182 judge-
ments as non-eviction cases.7 Of course this is a sub-optimal class distinction, as poten-
tially many of the 1182 judgements may, in fact, be eviction cases. Consequently, from
all cases that were classified as non-eviction cases, we only retained those which were
(when included in the test set during the three-fold cross-validation procedure) assigned
the non-eviction label with over 99% confidence (using Platt Scaling; 13). This reduced
the number of non-eviction judgements in our training set to 809. We then trained the
system again (using 809 non-eviction cases and 591 eviction cases) and evaluated it by
using the rest of the judgements from between 2000 and 2020. Out of 22,868 judgements,
3,277 (14%) were predicted as eviction-related.

Of course, not all predictions will be correct. To supplement our final correct train-
ing dataset, however, we did not use these predictions, but instead used these simply to
guide two subsequent manual annotation rounds (the first annotation round included the
69 aforementioned cases). Specifically, we asked two legal experts to spend eight hours

7For a more detailed explanation of machine learning classification and its evaluation (i.e. precision, recall,
f1-score, accuracy) applied to legal texts, see (12) and (4).
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in total on annotating judgements that our model predicted as eviction-related in the sec-
ond annotation round (under the assumption that many would not be eviction related),
and an additional four hours in total in a third annotation round focusing on the judge-
ments that our predicted as non-eviction. The annotators were provided the full text of a
randomly selected judgement and they had to simply identify whether the judgement was
concerning an eviction or not. In the allocated time, 716 judgements were annotated. Out
of predicted eviction judgements 298 (55%) turned out to be eviction related, while 243
judgements (45%) were not. In addition, and the vast majority of non-eviction cases 161
out 175 (92%) turned indeed out to be non-eviction related. This left us with a dataset
with 940 eviction judgements, and 436 non-eviction judgements. Table 1 provides an
overview of our final dataset.

Table 1. Number of available data in the initial dataset and after three rounds of annotation.

Eviction Non-eviction

Initial dataset 591 0
First annotation round 37 32
Second annotation round (predicted as eviction) 298 243
Third annotation round (predicted as non-eviction) 14 161

Total 940 436

Once we identify the eviction-related judgements, we are also interested in their
outcome. In the judgements concerning evictions, the courts of first instance can decide
to evict the resident and/or cancel the lease (labelled as eviction) or reject the property
owner’s claim (labelled as non-eviction). The cases are decided on by a single judge. All
of the eviction cases in the court of first instance are property owner vs. resident, with
the latter being the defendant.

4. Experiment I: Identifying Eviction-Related Judgements

4.1. Methodology

From the final dataset (see Table 1), we used 200 judgements (100 eviction-related and
100 non-related) to test and evaluate the model, which left us with 840 eviction and 336
non-eviction judgements to train and fine-tune the system. We then balanced this dataset
for training, leaving us with 336 eviction-related judgements and the same number of
non-related judgements. We used three-fold cross-validation to fine-tune the parameters
and ended up using a linear support vector machine, using as features the frequencies of
1-6 character n-grams (i.e. sequences of one to six characters).8 The results of the best
model can be found in Tables 2 and 3.

8The following command, showing all used parameters, was used to fit our final model:
CountVectorizer(analyzer = ‘char’, ngram range = (1,6), max features=None,

max df = 0.7, lowercase=False, binary=True); LinearSVC(C=0.01). For more details
on each parameter see the sklearn documentation available at https://scikit-learn.org/.
The full set of parameters we experimented with can be found in our code and data available at
https://github.com/masha-medvedeva/EVICT.
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Table 2. Results (precision, recall, f1-score and accuracy) for identifying eviction-related judgements using
three-fold cross-validation.

Precision Recall F1-score Support

Non-eviction 0.90 0.88 0.89 336
Eviction 0.88 0.90 0.89 336

Accuracy 0.89 672
Macro avg. 0.89 0.89 0.89 672

Weighted avg. 0.89 0.89 0.89 672

Table 3. Results (confusion matrix) for identifying eviction-related judgements using three-fold cross-
validation.

Actual topic

Non-eviction Eviction

Predicted topic
Non-eviction 294 42
Eviction 32 304

4.2. Results

Our final results, when evaluating our model on the held-out test set, are shown in Tables
4 and 5.

Table 4. Results (precision, recall, f1-score and accuracy) on the test set for identifying eviction-related
judgements.

Precision Recall F1-score Support

Non-eviction 0.92 0.81 0.87 100
Eviction 0.83 0.95 0.89 100

Accuracy 0.88 200
Macro avg. 0.89 0.88 0.88 200

Weighted avg. 0.89 0.88 0.88 200

Table 5. Results (confusion matrix) on the test set for identifying eviction-related judgements.

Actual topic

Non-eviction Eviction

Predicted topic
Non-eviction 81 19
Eviction 5 95

The results suggest that when having a reasonable amount of annotated data, it is
possible to identify eviction-related cases with a relatively high accuracy of about 88%.
Consequently, this automatic procedure can be suitably used to speed up the process of
finding relevant (eviction-related) case law.

When we evaluated the model on all (filtered) judgements published between 2000
and 2020 not included in our dataset, a total of 3,248 out 22,872 cases (all original judge-
ments between 2000 and 2020, excluding all annotated judgements) were classified as
eviction-related judgements. With an estimated precision of 83%, we expect about 2,695
cases to be actual eviction-related judgements. Similarly, with an estimated precision of
92% in identifying non-eviction related judgements, we expect an additional 8% of these
(i.e. 1569 judgements) to be eviction-related.
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5. Experiment II: Identifying the Outcome

5.1. Methodology

Once we identified the eviction-related judgements, we were interested in identifying
how many of them actually resulted in the eviction of a resident. Identifying the verdict
should not necessarily always be a machine learning task. A simple keyword search
could potentially be sufficient. Therefore, we first tried determining words that may be
characteristic of a specific outcome. While judgements of the courts of first instance do
not have a clear structure, they could potentially use the same wording for the verdict
itself. We then compare these results to a more sophisticated machine learning system
which is able to take more advanced features into account.

For this experiment we used the full set of 940 eviction-related cases shown in Ta-
ble 1. Except for the cases included in the initial dataset which already included an anno-
tated outcome, we asked two legal experts to annotate the outcome of each case: eviction
or non-eviction. We excluded 28 cases that had other types of verdicts, such as only can-
cellation of the lease, but no eviction, etc. The final dataset for this task contained 912
judgements (620 having an eviction outcome, whereas 292 had a non-eviction outcome).

5.1.1. Keyword-Based System

For the keyword-based system, we determined (via manual inspection of several cases)
a number of terms that relate to each specific outcome. We then automatically searched
for these terms in the decision section of the published judgement, and in cases where
the decision section was not specified, in the bottom part (2500 characters) of the text.
The keywords that we chose for being representative of an eviction outcome were (in-
cluding different forms of the same words): ontbinding (cancellation), ontruiming (evic-
tion), and verlaten (leave). If none of these words were found, our keyword-based system
determined that no eviction had been ordered by the court.

We tested the method on all 912 judgements that we had labels for. The results of
this system can be found in Tables 6 and 7.

Table 6. Results (precision, recall, f1-score and accuracy) for identifying the outcome of eviction cases using
keyword extraction.

Precision Recall F1-score Support

Non-eviction 0.88 0.65 0.75 292
Eviction 0.85 0.96 0.90 620

Accuracy 0.86 912
Macro avg. 0.87 0.80 0.82 912

Weighted avg. 0.86 0.86 0.85 912

Table 7. Results (confusion matrix) on the test set of identifying the outcome of eviction cases using keyword
extraction.

Actual outcome

Non-eviction Eviction

Predicted outcome
Non-eviction 189 103
Eviction 25 595
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This simple system achieved reasonably good results, although we can see that non-
eviction is not categorised very well, 103 (35%) out 299 non-eviction cases were misclas-
sified. However, the issue with a keyword-based system, is that it is very hard to improve
upon, unless one can come up with more specific keywords. Moreover, if the keywords
from one type of outcome are found in the judgement with a different outcome, this is
hard to correct. For instance, a judgement can contain the phrase “at this point, eviction
is not necessary”. While the word ‘eviction’ is present in this judgement, the case clearly
resulted in no eviction. However since we are just dealing with individual words, it is
hard to incorporate all possible nuances.

Nonetheless, as opposed to a system using machine learning, which we will dis-
cuss in the next subsection, this system does not require any prior annotation, other than
determining the keywords.

5.1.2. Machine Learning System

During the keyword-based experiment, we determined that the outcome usually appears
within the last 2500 characters of the judgement. While we experimented with shorter
and longer fragments, this subset seemed to work best for both of the experiments in
identifying the verdict. We used the initial dataset for training and cases from the first,
second and third rounds of annotation for testing. We have built a Linear SVC that uses
character (1-7) n-grams, and optimised it for a number of other parameters.9 The results
of the model during the cross-validation stage can be found in Tables 8 and 9.

Table 8. Results (precision, recall, f1-score and accuracy) for identifying the outcome of eviction cases using
three-fold cross-validation.

Precision Recall F1-score Support

Non-eviction 0.97 0.96 0.96 183
Eviction 0.98 0.99 0.98 379

Accuracy 0.98 562
Macro avg. 0.98 0.97 0.97 562

Weighted avg. 0.98 0.98 0.98 562

Table 9. Results (confusion matrix) for identifying the outcome of eviction cases using three-fold cross-
validation.

Actual outcome

Non-eviction Eviction

Predicted outcome
Non-eviction 175 8
Eviction 5 374

5.2. Results

We then tested the model on the cases that we were able to extract in the previous exper-
iment. The performance on the test set can be found in Tables 10 and 11.

9The following command, showing all used parameters, was used to fit our final model:
CountVectorizer(analyzer = ‘char’, ngram range = (1,7), max features=2000,

max df = 0.9, lowercase=True, binary=True); LinearSVC(C=0.001) The full set of param-
eters we experimented with can be found in our code and data available at https://github.com/

masha-medvedeva/EVICT.
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Table 10. Results (precision, recall, f1-score and accuracy) on a test set for identifying the verdict of eviction
cases.

Precision Recall F1-score Support

Non-eviction 0.82 0.94 0.88 109
Eviction 0.97 0.91 0.94 241

Accuracy 0.92 350
Macro avg. 0.90 0.92 0.91 350

Weighted avg. 0.92 0.92 0.92 350

Table 11. Results (confusion matrix) on a test set for identifying the verdict of eviction cases.

Actual outcome

Non-eviction Eviction

Predicted outcome
Non-eviction 102 7
Eviction 22 219

As we can see from the results, we were able to achieve a very high performance,
especially for the eviction class. When inspecting the cases manually, it is clear that the
phrasing of the judgement outcomes varies to a large extent from case to case. Similar
as in many other natural language processing tasks, the best-performing model included
not word n-grams, but character n-grams (14; 15). While we did try using word n-grams
for this experiment, in the hope of identifying additional keywords for the keyword-
based approach, we did not identify any additional unique words for both outcomes. The
performance of the machine learning approach was much higher than the performance of
the keyword-based approach. However, whereas the machine learning approach requires
annotated data, the keyword-based method does not.

6. Discussion and Conclusion

In this paper we have presented two experiments, one to identify case law having a cer-
tain topic, specifically judgements concerning evictions, and one to subsequently iden-
tify the outcomes of these eviction judgements. For both tasks, we have shown a high
performance, being able to identify eviction-related cases with 88% accuracy, and cor-
rectly identifying the outcome in eviction-related cases in 92% of cases. While identify-
ing this type of information may seem easy (as the information is available when reading
the document), a keyword-based approach showed it is not straightforward when the in-
formation is provided as natural text. While in this paper we were not able to identify all
eviction cases perfectly, our machine learning approach can suitably be used to identify
cases which are likely to be eviction cases. Manually checking this smaller set of cases
(at a rate of about 1 case per minute) is feasible, whereas checking the full set is not.
With relatively little effort, a new database containing thousands of cases can therefore
easily be created.

Such a more restricted subject-specific database is also useful in the context of in-
creasing research focusing on categorising or forecasting court decisions (12; 16; 17;
18; 19). This type of research is mostly limited to only a few courts, such as the US
Supreme Court or the European Court of Human Rights. This is partly due to the courts’
publishing policies, even though more and more courts publish their case law. The dom-
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inant focus on a few courts, however, is also caused by the relative large diversity of
uncategorised cases in other courts. Therefore narrowing down the task, as we have done
here, will likely help subject-specific machine learning systems for these courts (e.g.,
distinguishing between bankruptcy cases) to be developed.
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