As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The study aims at generating initial and directional insights in the applicability of conditional recurrent generative adversarial nets for the imputation and forecasting of medical time series data. Our experiment with blood pressure series showed that a generative recurrent autoencoder exhibits significant individual learning progress but needs further tuning to benefit from joint training.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.