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Abstract. The study aims at generating initial and directional insights in the applica-

bility of conditional recurrent generative adversarial nets for the imputation and 
forecasting of medical time series data. Our experiment with blood pressure series 

showed that a generative recurrent autoencoder exhibits significant individual learn-

ing progress but needs further tuning to benefit from joint training. 
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1. Introduction 

Time series data accrue in many medical contexts. First of all, bedside monitors gather 

patient-related time series data like vital signs, EEG waves and alike. Moreover, hospital 

logistics and stock management depend on temporal inventory data as well. Thus, accu-

rate predictions of missing and future values can help to improve patient care. Several 

generative adversarial nets (GAN) have been introduced for the generation of synthetic 

time series data [1] or for forecasting one step [2]. However, to our knowledge, there are 

no published results about a system based on recurrent conditional GANs for the multi-

step imputation and prediction task in the biomedical domain. We want to investigate the 

suitability of such a system and have developed an initial approach to do so. 

2. Methods 

In the present work we combine two recurrent sequential autoencoders (SAE) into a con-

ditional GAN trained to enable the generator to predict time series data. A similar setup 

had proven to be well suited for text infilling [3]. For the supervised training procedure 

there exist two versions of every time series, the original one and a masked one. For the 

latter, the masked steps are replaced by a special character. The generator and discrimi-

nator both consist of two long short-term memory (LSTM) networks, one for encoding 

the other one for decoding. The bidirectional encoder LSTMs work in the same way in 

both AEs. They process the time series stepwise and output one so-called context vector 

each, which summarises all unmasked time series steps. In the generator, the context is 

attached to all values of the masked series before they are handed over to the decoder 

producing estimates at the missing positions. The discriminator’s context is attached to 

each of these outputs of the generator. Afterwards, its decoder decides for every input 

position whether it is a fake (produced by generator) or an original time series value.  
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3. Results 

For the experiment, a data set comprising time series of ICU patients’ arterial blood pres-

sure over intervals of 10 s was used. All data points were extracted from MIMIC-III 

Waveform [4]. During the masking process, a mask of 20 consecutive samples was used 

that was applied to every time series at a random position. The generator was pretrained 

on the full training set for 50 epochs to minimise the mean squared error. Afterwards, 

the GAN training proposed in [5] was started. The generator’s optimizer kept the same 

learning rate as during pretraining. The rate for the discriminator was set to half of this. 

During the combined training, discriminator and generator were trained in alternation 

and both got half of the batch as training samples in every step. In all training phases, 

teacher forcing was applied, i.e. previous target values were passed to the decoder instead 

of predicted ones, as was the case during inference. During pretraining, the generator’s 

mean squared error dropped from 2609 to 489. In the first epoch of the adversarial train-

ing, the generator’s error increased slightly and decreased again very slowly over the 

following 25 epochs. However, the generator never performed better than directly after 

pretraining. The discriminator showed the opposite behaviour. Its accuracy increased 

rapidly before it levelled out to 0.5. The latter phase of the combined training led to 

oscillations in the performance measures of both parts. 

4. Discussion 

The results of the pretraining exhibit that the SAE topology used for the generator and 

the discriminator is expedient. However, only the pretraining showed the expected be-

haviour. In the presented experiments, the adversarial training did not lead to further 

improvement of the generator, since it destabilised the model after around 30 epochs. 

5. Conclusion 

We developed a GAN-based imputation and prediction approach for time series data. 

While the generator performed well on its own in our experiment, the current version 

does not achieve performance increase during the adversarial training. In the next stages, 

we would like to add approaches that counteract the destabilisation by the discriminator 

(Wasserstein loss) and some that might improve the generator (attention mechanism). 
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