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Abstract. Our study aimed to compare the capability of different word embeddings 

to capture the semantic similarity of clinical concepts related to complications in 

neurosurgery at the level of medical experts. Eighty-four sets of word embeddings 
(based on Word2vec, GloVe, FastText, PMI, and BERT algorithms) were 

benchmarked in a clustering task. FastText model showed the best close to the 

medical expertise capability to group medical terms by their meaning (adjusted 
Rand index = 0.682). Word embedding models can accurately reflect clinical 

concepts' semantic and linguistic similarities, promising their robust usage in 

medical domain-specific NLP tasks.
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1. Introduction

Word embeddings enable capturing useful semantic properties and linguistic 

relationships between words which might be important for information extraction, 

classification, and more complex natural language processing (NLP) tasks. In our 

opinion, word embeddings might help study distinct clinical concepts and discover 

relationships between them as soon as the underlying models accurately reflect clinical 

semantics. Thus, it seems reasonable to test this capability of word embeddings in 

modeling the known relationships between clinical concepts well-recognized by medical 

experts.

The specific domain we focused on was complications in neurosurgery. There are 

well-known types of complications accepted by many experts. However, the wide 

spectrum has not been described and agreed upon between neurosurgeons. Furthermore,

the formal definitions of complications in neurosurgery are vague. Therefore, we 

hypothesized that word embeddings learned from narrative clinical notes can contribute 

to understanding the spectrum of complications in neurosurgery and a more rigorous 

definition of this concept. Our study aimed to compare the capability of different word 
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embeddings to capture the semantic similarity of clinical concepts related to 

complications in neurosurgery at the level of medical experts.

2. Methods

To accomplish the research task, all unstructured textual data potentially containing the 

information on complications in neurosurgery were obtained from the electronic health 

records (EHR) of the National Medical Research Center of Neurosurgery named after 

academician N.N. Burdenko (Moscow, Russia) for the period between 2000 and 2017.

The source documents reflected the initial assessment, past medical history, history of 

present illness, laboratory tests, physical and neurological examination, studies, 

medication, operative reports, daily notes, discharge summaries, etc. All the texts were 

typed in by doctors and other medical personnel on a keyboard. The corpus was 

preprocessed as follows: all the characters except for Cyrillic symbols and single spaces 

removed; texts tokenized with a space separator; stop-words, meaningless tokens (single 

letters, artifacts, etc.) and words occurred less than 6 times in the corpus eliminated;

spelling corrected with the method we proposed in our previous work and tokens 

lemmatized (1). A medical expert then screened the resulted vocabulary of unique 

lemmas to select maximum terms potentially related to any adverse events (with broad 

inclusion criteria to capture diseases, symptoms, syndromes, accidents, medical errors, 

etc.).

All the words in the initial corpus were substituted by their lemmas to train word 

embeddings with Word2vec, GloVe, FastText, and pointwise mutual information (PMI) 

algorithms (2–5). When appropriate, we varied model type (CBOW/skip-gram), context

window size (5-20), vector size (50-300), and the number of iterations over data across 

the models. The unprocessed clinical corpus was used to train RoBERTa (Robustly 

Optimized BERT Pretraining Approach) masked language model (6). It was trained 

during 5-10 epochs using base architecture. Different aggregated techniques were 

applied to get word embeddings of the vocabulary: mean average and maximum 

calculation of representations from the encoder-layers. The intersection of all sets of 

nouns showing positive cosine similarity with the word "complication" in every vector 

space obtained was further screened and labeled (when possible) by the type of clinical 

entity (symptom, syndrome, disease), body system, organ involved and ICD10 code for 

each term. A fully labeled subset of nouns was grouped by 4 aforementioned features to 

shape benchmark clusters. A k-means clustering algorithm was then applied to cluster 

each set of word embeddings with k equal to the number of benchmark clusters. Finally, 

we judged the clustering quality comparing to benchmark clusters using an adjusted 

Rand index.

The data were processed, and most word embeddings were learned within the R 

programming environment (version 4.0.3) in RStudio Server IDE (version 1.3.1093) 

using tidyverse, tidytext, dplyr, Matrix, text2vec, word2vec, widyr, irlba, SnowballC, 
furrr and fossil packages. FastText and RoBERTa vector representations were obtained 

with Python programming language (version 3.6.10) in Jupyter Notebook (version 6.1.4)

using fasttext and HuggingFace tokenizers and transformers libraries.
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3. Results

To create a clinical corpus, 588 text fields from 78 tables of the EHR database were 

identified. The corpus was compiled of 13 060 326 narrative text records containing data 

for 90 688 complete cases of neurosurgical treatment. Text preprocessing and 

tokenization produced 229 019 413 raw word tokens ending up with 40 121 unique 

lemmas. Of these, the expert selected 5 853 terms, potentially relevant for the concepts

of complications/adverse events. A total of 84 vector spaces with different word 

embedding engines and varying learning parameters were obtained in the study. After 

finding the intersection of all sets of nouns showing a positive cosine similarity to the 

word "complication" in every vector space, it was possible to completely label 258 

words, which were grouped into 40 benchmark clusters by 4 features (see the "Methods" 

section). The results of vector clustering with the k-means algorithm in benchmarking 

are shown selectively for 10 types of word embeddings in Table 1.

Table 1. Benchmarking of word embeddings clustering assessed with ARI. CBOW – continuous bag of words, 

SG – skip-gram, NI – number of iterations, ARI – adjusted Rand index.

Model CBOW/SG Window size Vector size NI ARI
1 FastText skipgram 10 100 - 0.682

2 FastText cbow 5 200 - 0.677

3 RoBERTa - - - - 0.330

4 GloVe - 10 100 20 0.157

5 GloVe - 10 300 20 0.116

6 PMI - 10 100 - 0.081
7 Word2vec cbow 10 300 10 0.013

8 Word2vec skipgram 10 300 10 0.013

9 Word2vec cbow 10 100 10 0.005

10 Word2vec skipgram 10 100 10 0.005

Figure 1 shows a word cloud of medical terms semantically similar to the word 

“complication” in a high dimensional space produced by the best FastText model in our 

experiment (ARI = 0.682) and projected in 3-dimensional space by the t-SNE algorithm 

(perplexity = 8, learning rate = 10) with TensorBoard Embedding Projector. All the terms 

in Russian were automatically translated with the https://translate.yandex.ru/ service for 

international presentation purposes. Some of the terms containing misspellings were 

transliterated. The best word embedding approach demonstrates a reasonable spatial 

distribution of the related concepts that occur in the context of the "complication" term.

                            Figure 1. Word clusters of complications in neurosurgery derived from high dimensional FastText word 

embeddings and represented in 3 dimensions by the t-SNE algorithm with TensorBoard Embedding Projector 

(http://projector.tensorflow.org/). For example, word clusters for intracranial inflammatory complications are 

scaled right, and thromboembolism is shown left.
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4. Discussion

In our study, models leveraging sub-word information from morphologically rich 

Russian language performed better compared to those treating words as atomic units.

Interestingly, the BERT-based model demonstrated worse results than FastText in our 

domain-specific task, possibly due to the isolation of words from their contexts. Source 

words misspellings, expert-dependent benchmark cluster labeling, and a fixed set of 

models might be the limitations of our study. Generally, our results support those of the 

authors from other medical domains (7). Y. Wang et al. (2018) showed that word 

embeddings trained from EHR and medical literature can capture the semantics of 

medical terms better, and find semantically relevant medical terms closer to human 

experts’ judgments than those trained from general domain data (8). The authors also 

importantly concluded that no global ranking of word embeddings for all biomedical 

NLP applications exists (8).

5. Conclusion

Word embedding models can accurately reflect clinical concepts' semantic and linguistic 

similarities, promising their robust usage in medical domain-specific NLP tasks. This 
project was supported by the RFBR grants 18-29-01052 (data preprocessing) and 18-
29-22085 (adverse events clustering).
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