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Abstract 

Meta-analyses examine the results of different clinical studies 
to determine whether a treatment is effective or not. Meta-anal-
yses provide the gold standard for medical evidence. Despite 
their importance, meta-analyses are time-consuming and this 
poses a challenge where timeliness is important. Research ar-
ticles are also increasing rapidly and most meta-analyses be-
come outdated after publication since they have not incorpo-
rated new evidence. Therefore, there is increasing interest to 
automate meta-analysis so as to speed up the process and allow 
for automatic update when new results are available. In this 
preliminary study we present AUTOMETA, our proposed sys-
tem for automating meta-analysis which employs existing nat-
ural language processing methods for identifying Participants, 
Intervention, Control, and Outcome (PICO) elements. We show 
that our system can perform advanced meta-analyses by pars-
ing numeric outcomes to identify the number of patients having 
certain outcomes. We also present a new dataset which im-
proves previous datasets by incorporating additional tags to 
identify detailed information. 
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Introduction 

A meta-analysis is a type of quantitative study that collects and 

analyses the results of different studies that are all focused on 

the same disease, treatment, or outcome to ascertain if a treat-

ment is effective or not. Meta-analyses provide the gold stand-

ard for medical evidence [1]. Regardless of their importance, 

meta-analyses tend to be labor-intensive, cost-, and time-con-

suming because they require comprehensive search and reading 

of hundreds of research articles written in unstructured natural 

language to find medical evidence [2]. These research articles 

are increasing rapidly and it is becoming difficult for research-

ers to keep up with new publications [3,4]. For instance, a re-

cent study showed that on average 59 research articles related 

to the COVID-19 pandemic are published daily [5]. It takes 

more than 1 year (from registration to publication) to finalize a 

meta-analysis which is rarely updated [6,7]. This poses a chal-

lenge especially for practitioners in the infectious disease field 

where timeliness is important, and informed decisions need to 

be made promptly. Furthermore, most meta-analyses are 

quickly outdated after publication as they have not included 

new evidence which might change the primary results [6]. 

Automating the meta-analysis process including searching da-

tabases for relevant studies, screening the studies, data extrac-

tion, and statistical analysis, will improve the dissemination of 

medical evidence. Also, it allows for automatic updates when 

new results are available [8]. Surveys on automation of meta- 

 

analysis show that many methods have been proposed for auto-

mating the different stages for meta-analysis [2,3]. A survey by 

Marshall et al. [3] suggests that systems for searching literature, 

identifying randomized controlled trials (RCTs), and screening 

articles have achieved high performance and are ready for use. 

However, the systems for the data extraction step are still not 

readily available. This is because data extraction requires high 

accuracy which may be difficult for automated systems to 

achieve. A barrier to the development of high-performance 

models is the lack of training data for the data extraction task 

[3]. Although there are few high-quality training data, which 

are usually expensive to create, Nye et al. [9] developed the 

EBM-NLP corpus containing about 5000 abstracts of RCT ar-

ticles annotated in detail. This corpus is helpful for the devel-

opment of automatic models for data extraction for meta-anal-

ysis. A drawback of this corpus is that they do not annotate 

numbers which identify the outcome results (i.e., the number of 

the patients having certain outcomes). 

 

Figure 1 – System architecture of AUTOMETA 

This study aims at developing an automatic meta-analysis sys-

tem based on natural language processing (NLP) by creating a 

corpus that has additional tags to identify detailed information 

for the outcomes, especially identifying the number of patients 

having certain outcomes. We focused on breast cancer because 
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it is one of the leading causes of death in the world1 and ex-

tracted 600 abstracts of RCT’s related to breast cancer preven-

tion from the PubMed database2. The corpus is annotated simi-

larly to the EBM-NLP [9] corpus and with additional tags to 

identify detailed information for the outcomes. AUTOMETA 

(shown in Figure 1) extracts the Participants, Interventions, 

Control, and Outcomes (PICO) elements from abstracts by em-

ploying NLP techniques and turns them into structured data. 

Then, it parses numeric outcomes into their associated fields 

and aggregates and visualizes extracted outcomes for statistical 

analysis. 

Materials and methods 

Corpus 

The corpus for this study consists of abstracts extracted from 

PubMed2. PubMed is a free search engine which provides ac-

cess to the MEDLINE database3 which contains indexes, refer-

ences, titles, and abstracts for biomedical and life sciences arti-

cles. We extracted articles with study type RCT, and are not 

meta-analysis or systematic-reviews. This was achieved by us-

ing keywords such as “randomized controlled,” “randomised 

controlled,” “meta-analysis,” and “systematic review.”  

The annotators were asked to identify the PICO elements in 

each abstract as discussed below. Figure 2 shows an abstract 

with the PICO elements highlighted.  

� Participants: identify text snippets which describe the 

characteristics of the participants. Here we defined 7 

labels for identifying participants’ characteristics 

which include the number of participants (total par-

ticipants, participants in the intervention group, or 

participants in the control group), average age, eth-

nicity, location of the study, eligibility, total duration, 

and condition. Although breast cancer is the main 

condition, we are also interested in identifying the 

condition/symptom of breast cancer that is being 

treated (such as hair loss, bone loss, and vomiting). 

� Intervention and Control: identify the specific inter-

vention and control used in the study. 

� Outcome: identify what is being measured in the 

study so as to identify if the treatment worked. Here 

we defined 5 labels which include the outcomes that 

were measured, number of events in the intervention 

group, number of events in the control group, out-

come measure, and adverse effects. 

 
1 https://www.who.int/news-room/fact-sheets/detail/cancer 
2 https://pubmed.ncbi.nlm.nih.gov/ 

 

Figure 2– An abstract with PICO elements highlighted. The 
top part shows the abstract while the bottom part shows the 
PICO elements transformed into a structured format. Some 

slots are empty if their corresponding information is not in the 
abstract. 

Data extraction 

The data extraction task can be formulated as a sequence label-

ling task, i.e., given a token classify it as one of predefined 

named entity recognition (NER) tags. Previous studies on ex-

traction of PICO elements have proposed rule-based, Support 

Vector Machines (SVM), Naive Bayes (NB), and Conditional 

Random Fields (CRF)-based models [2]. Although these mod-

els are useful in information extraction, they heavily rely on 

hand-crafted features. Designing hand-crafted features is time-

consuming and requires domain knowledge in determining use-

ful features.  

Deep learning-based models have gained popularity for the data 

extraction task since they do not require predefined hand-

crafted features. Deep learning-based models have achieved 

state-of-the-art performance in information retrieval by using 

contextualized text embeddings [10,11]. Jin et al. [12] proposed 

a bidirectional long short-term memory (Bi-LSTM) model for 

extraction of PIO elements from PubMed abstracts. Mezaoui et 

3 https://www.nlm.nih.gov/bsd/pmresources.html 

 

Bajpai, J., et al. "Randomised controlled trial of scalp cooling for the prevention of 
chemotherapy induced alopecia." The Breast 49 (2020): 187-193. 

Background: Randomized controlled trials (RCT) of scalp cooling (SC) to prevent 
chemotherapy induced alopecia (CIA) did not evaluate its effect on hair regrowth (HR) 

and was conducted in a predominantly taxane (T) treated population. We conducted an 

RCT of SC in a setting of anthracycline (A) and taxane chemotherapy (CT) and assessed 
its effect on CIA and HR. 

Methods: Non-metastatic breast cancer women undergoing (neo) adjuvant CT were 

randomized to receive SC using the Paxman scalp cooling system during every cycle of 
CT, or no SC. The primary end point (PEP) was successful hair preservation (HP) 

assessed clinically and by review of photographs after CT. HR was assessed at 6 and 12 

weeks. 
Results: 51 patients were randomized to SC (34) or control arm (17) in a 2:1 ratio. 

Twenty-five (49%) patients received A followed by T and the two arms were balanced 

with respect to this factor. HP rate was significantly higher in SC arm compared to 
control arm (56.3% vs 0%, P = 0.000004). HR was higher in SC arm compared to control 

at 6 weeks (89% vs 12%; P < 0.001) and 12 weeks (100% vs 59%, P = 0.0003). Loss of 

hair at PEP evaluation, which was a quality of life measure, was significantly lower in 
SC versus control arm (45% vs 82%, P = 0.016). There were no grade 3-4 cold related 

adverse effects. 

Conclusions: Women with breast cancer receiving A or T chemotherapy receiving SC 
were significantly more likely to have less than 50% hair loss after CT, superior hair 

regrowth and improvement in patient reported outcomes, with acceptable tolerance. It 

merits wider usage. 
 

           Participants             Intervention and Control             Outcome 

 

Number of participants 51 

Intervention participants 34 

Control participants 17 

Age  

Ethnicity  

Location  

Eligibility non-metastatic breast cancer women undergoing 

(neo) adjuvant CT 

Total duration  

Condition chemotherapy induced alopecia 

Intervention scalp cooling 

Comparator no scalp cooling 

Outcome measure successful hair preservation 

Outcome hair preservation rate 

Intervention events 56.3% 

Control events 0% 

Outcome hair regrowth 

Intervention events 89% 

Control events 12% 

Outcome hair regrowth 

Intervention events 100% 

Control events 59% 

Outcome Loss of hair 

Intervention events 45% 

Control events 82% 

Adverse effects  
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al. [13] proposed an improvement of the Jin et al. [12] model 

by adding a multi-label PIO classifier based on BERT which 

provides state-of-the-art embeddings.  

In this study, we use a BERT-based model since BERT has 

achieved state-of-the-art performance in various NLP tasks in-

cluding NER [10,11]. BERT is a general-purpose language 

model trained on a large dataset and uses the encoder structure 

of the Transformer, which is an attention mechanism that learns 

contextual relations between words (or subwords) in a text. 

BERT was first pre-trained on general English domain texts in-

cluding Wikipedia and BooksCorpus. However, biomedical do-

main texts, such as our corpus, contain domain-specific words 

and general-purpose language models might perform poorly in 

domain-specific tasks. Domain-specific BERT models such as 

BioBERT [14] have been developed to address this challenge. 

BioBERT is initialized by BERT and further trained on bio-

medical domain texts including PubMed abstracts and PubMed 

Central full-text articles.  

The data extraction step aims to extract PICO elements from 

the research articles and convert them into a structured form as 

shown in Figure 2. After extraction of PICO elements, we parse 

numeric texts to identify the number of participants having cer-

tain outcomes, as shown in Figure 3. This is a challenging task 

because research articles lack uniformity, and different articles 

report results differently. Some of the common patterns to indi-

cate which patients have certain outcomes include, Z of Y , X% 

(n = Z), Z (X%), and X%. In cases such as X%, we require 

knowledge of the number of participants in the intervention and 

control groups so as to calculate the number of affected partic-

ipants. 

Acronym expansion  

Acronyms are commonly used in research articles to avoid re-

peating long phrases and save space. Although acronyms sim-

plify writing and reading, they pose a challenge to text under-

standing tasks [15]. In research articles, acronyms mostly occur 

in the words preceding their first use in parentheses, for exam-

ple, “The primary end point (PEP) was successful hair preser-

vation (HP) assessed clinically and by review of photographs.” 

In this study, we adopt a rule-based acronym expansion method 

using regular expressions. First acronyms are identified by find-

ing terms in parentheses if they are between two and ten char-

acters. By using regular expressions, expansion candidates are 

found from the surrounding text. 

System architecture  

The architecture of the proposed AUTOMETA system is as 

shown in Figure 1. Our main goal is to provide a system for 

automating the meta-analysis process as much as possible so as 

to reduce the time taken in conducting a meta-analysis. The pro-

posed system consists of four major components: crawling Pub-

Med articles, NLP module, creating structured data, and aggre-

gation and visualization. First, a user queries the PubMed data-

base and related articles are returned. Abstracts are then ex-

tracted from the articles and passed to the NLP module for pre-

processing and extraction of PICO elements. The extracted data 

is then converted into a structured form as shown in Figure 2. 

In this study, we also parse numeric texts to identify the number 

of patients having certain outcomes (Figure 3). Identification of 

the number of patients having certain outcomes is important for 

statistical analysis to determine the effectiveness of an interven-

tion. The final step of the system is to aggregate the studies and 

present them for statistical analysis such as visualizing the data 

using forest plots (Figure 1) which provide a summary and the 

extent to which results from different studies overlap. 

 

Figure 3– Sample outcomes extracted from three studies, 
Veronesi et al. [16], Garrone et al. [17], and Cuzick et al. 

[18]. The studies are clinical trials for investigating the effect 
of tamoxifen (intervention) in breast cancer patients. The red 

text shows model prediction error. 

Results and discussion 

The motivation of this paper is to present the feasibility of au-

tomating meta-analysis. This study is preliminary and the entire 

AUTOMETA system was not evaluated. However, we investi-

gate the performance of the most important module, the NLP 

module. Our corpus consists of 600 PubMed abstracts anno-

tated with PICO elements, and the frequency of each element is 

as shown in Table 1. The dataset was split into 80% training set 

and 20% test set. We developed a BioBERT-based model and 

the performance was evaluated using precision, recall, and F1 

score. The results are shown in Table 2. The performance for 

several categories such as the number of participants, average 

age, and total duration is relatively high. The system achieved 

the highest F1 score for number of participants, which had a 

high frequency (1435) in the dataset. The F1 score for interven-

tion and control was the lowest indicating that the model could 

not identify intervention and control effectively. 

Figure 3 shows examples of studies whose intervention is ta-

moxifen. The model was able to capture the outcomes and their 

respective intervention events and control events relatively 

well. In the corpus, the number of participants irrespective of 

whether they are in the intervention group or control group are 

labelled as the number of participants. Therefore, to identify the 

number of participants in the intervention and control groups, 

first the system finds the extracted number of participants, and 

then assigns them to the intervention group or control group 

based on which they are closest to. In the Cuzick et al. study, 

the model misidentified the intervention events and control 

   Intervention 
group 

Control group 

Study Sentence Predicted 
outcome 

#events #total #events #total 

Veronesi 

et al. 

 

Temporary 

discontinuation occurred 

in 2.5% of patients in the 

adjuvant studies and in 

5.4% of women in the 

chemoprevention study 

… 

 

Temporary 

discontinuation 

occurred 

2.5% 119 5.4% 202 

Garrone 

et al.  

 

A significantly higher 

proportion of patients in 

the tamoxifen group had 

increased ET at 6 and 12 

months from 

randomisation compared 

with the exemestane 

group (66.1% and 64.3% 
versus 12.1% and 6.8%, 

respectively; P < 

0.0001). 

 

significantly 

higher 

proportion of 

patients in the 

tamoxifen 

group had 

increased ET at 

6 and 12 
months from 

randomisation 

compared with 

the exemestane 

group 

66.1% 61 12.1% 62 

Cuzick 

et al. 

 

The risk of developing 

breast cancer was similar 

between years 0-10 (226 
[6.3%] in 3575 women 

in the placebo group vs 

163 [4.6%] in 3579 

women in the tamoxifen 

group; hazard ratio [HR] 

0.72 [95% CI 0.59-

0.88], p=0.001) and after 
10 years (124 [3.8%] in 

3295 women vs 88 

[2.6%] in 3343, 

respectively; HR 0.69 

[0.53-0.91], p=0.009). 
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events. In most articles, intervention events tend to appear be-

fore control events. The model might have learned this pattern 

and hence the reason for the error.  

The evaluation of how well the system identifies outcomes and 

their respective intervention events and control events is chal-

lenging. Although the performance of this step largely depends 

on the performance of the data extraction step, how to effec-

tively evaluate is one of our important future work. Moreover, 

our corpus is small, and we believe that by increasing the anno-

tated data the model performance can be significantly im-

proved. However, considering that this study is preliminary, we 

believe the proposed system, AUTOMETA, is technically fea-

sible. 

Table 1– Corpus statistics 

Category Sub-category # tags 

Participants  Number of participants 1435 

 Average age 168 

 Ethnicity  75 

 Location  130 

 Eligibility  654 

 Total duration 463 

 Condition  454 

Intervention Intervention  619 

and control Control  606 

Outcome  Outcome measure 1019 

 Outcome  2584 

 Intervention events 1340 

 Control events 854 

 Adverse effects 119 

 

Limitations 

One limitation is that our study uses abstracts only. Abstracts 

sometimes lack important information that may be presented in 

the full text document. A manual check of the abstracts in our 

corpus found that some do not mention the number of partici-

pants in the intervention and control groups. This will present a 

challenge when determining the number of the patients having 

certain outcomes for statistical analysis. A second limitation is 

that we do not account for participants who drop out of a study 

and this might affect the final results of the meta-analysis. Ab-

stracts often lack information about the number of participants 

who drop out from a study. Therefore, for future work it will be 

important to consider full-text articles. 

Table 2– BioBERT model results in terms of precision, recall 
and F1 score on the test set. 

Sub-category Precision Recall F1 

Number of partici-

pants 

0.87 0.94 0.91 

Average age 0.93 0.88 0.90 

Ethnicity  0.83 0.83 0.83 

Location  0.71 0.92 0.80 

Eligibility  0.82 0.87 0.84 

Total duration 0.78 0.84 0.81 

Condition  0.69 0.63 0.66 

Intervention  0.65 0.61 0.63 

Control  0.62 0.63 0.63 

Outcome measure 0.80 0.82 0.81 

Outcome  0.77 0.87 0.82 

Intervention 

events 

0.64 0.80 0.71 

Control events 0.71 0.68 0.69 

Adverse effects 0.91 0.59 0.71 

Conclusion 

In this study, we presented AUTOMETA, a system for auto-

mating meta-analysis by using NLP techniques. Our main goal 

is to provide a system for automating the meta-analysis process 

as much as possible so as to reduce the time taken in conducting 

a meta-analysis, increase the dissemination of medical evi-

dence, and allow for automatic update when new evidence be-

comes available. The proposed AUTOMETA system extracts 

PICO elements from research articles, performs advanced 

meta-analysis by parsing numeric outcomes to identify the 

number of patients having certain outcomes, and presents re-

sults in a structured form for statistical analysis. We also pre-

sented a new dataset which improves previously released da-

tasets by providing detailed annotation for the outcomes. 
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