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Abstract 

Spinocerebellar ataxia type 12 (SCA12) is a neurodegenerative 
genetic disorder triggered by abnormal CAG repeat expansion 
at locus 5q32. MRI recognises dissimilarities in affected areas 
of SCA12 patients and healthy subjects. But manual diagnosis 
is time-consuming and prone to subjective errors. This has 
motivated us in developing a systematic and authentic decision 
model for computer-aided diagnosis (CAD) of SCA12. Four 
different feature extraction techniques are examined in this 
research work, such as First Order Statistics, GLRLM, GLCM, 
and GLGCM, to obtain distinguishable characteristics for 
differentiating SCA12 patients from healthy subjects. The 
model’s performance is measured using sensitivity, specificity, 
accuracy and F1-score with leave-one-out cross-validation 
scheme. Our experimental results show that features based on 
the GLRLM can distinguish SCA12 from healthy subjects with 
a maximum classification accuracy of 85% among all the 
different function extraction techniques used.  
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Introduction 

Spinocerebellar Ataxia (SCA) is a growing neuro-progressive 

disorder caused by dysfunction of the cerebellum and spinal 

cord. Damage to the cerebellum can arise as an outcome of in-

jury or illness (acquired ataxia) or because of degeneration of 

the cerebellum or spinal cord (hereditary ataxia), which mainly 

causes a lack of motor and speech coordination [7]. The first 

SCA gene was identified in 1993 and named Spinocerebellar 

ataxia type 1 (SCA1), while later genes were called SCA2, 

SCA3, etc. Ataxia is usually caused by damage to the cerebel-

lum, the spinal cord or other nerves [8].  

SCA12 was first identified by Holmes et al. [15] in a German-

American kindred who had complaints of hand tremor accom-

panied by symptoms of cerebellar ataxia in later years of life. 

Affected individuals also developed parkinsonism, psychiatric 

manifestations, dementia, and autonomic abnormalities in later 

stages [15]. The number of cases reported worldwide for 

SCA12 were very scarce [22]. SCA12 being one of the rare sub-

types is found chiefly limited to India [1,22,35]. SCA12 is 

caused by the abnormal CAG repeats expansion in the 5’ un-

translated region of PPP2R2B gene at locus 5q32 [15]. 

SCA12 is marked by significant tremors in the arms but can 

occur in the tongue, lips, neck and trunk [34]. Intentional tremor 

(tremor with purposeful movements) and postural tremor 

(tremor at rest) are also detected [26]. Clinical manifestations 

of SCA12 include cerebellar dysfunctions, generalised hyper-

reflexia, tremor, gait dysfunction, extrapyramidal features, py-

ramidal weakness, cognitive and behavioural disturbances [29]. 

The preliminary diagnosis of SCA12 can be made using Ataxia 

Rating Scales such as Unified Ataxia Disorders Rating Scale: 

UADRS [37], The International Cooperative Ataxia Rating 

Scale: ICARS [38] and Scale for the Assessment and Rating of 

Ataxia: SARA [33] helped clinicians for initial diagnosis of 

SCA. A complete neurological evaluation using Genetic testing 

confirms the presence of ataxia in patients. These clinical eval-

uation tests are based on the patient’s medical or family history. 

These tests are mostly indirect and biased as they rely on expert 

clinicians’ experience, which may produce subjective findings. 

Also, information gathering from patients requires a significant 

amount of time and effort [25]. 

A new potential for computer-aided diagnosis (CAD) in medi-

cine has been created by brain imaging. Structural Magnetic 

Resonance Imaging (sMRI) is the most preferred neuroimaging 

technique among many brain imaging modalities due to its ca-

pability to deliver high-resolution anatomic images of brain tis-

sues and the inherent characteristic non-invasiveness.  

Severe neuronal loss has been reported in cerebellar hemi-

spheres, vermis, midbrain [9,14,16,22,24,27–30,32,36]. While 

the studies listed have indicated distinguishable degeneration 

patterns, there is still a lack of thorough quantitative analysis of 

degeneration patterns for different subtypes of SCA. Also, lim-

ited research work is done on neuroimaging of SCA12. The dis-

ease identification is done through genetic testing (Blood test), 

which takes approximately three months. This is accompanied 

by an MRI scan which clinicians manually analyse. This makes 

the whole process of diagnosing the disease long, cumbersome, 

and susceptible to human error. There have been attempts to 

apply Machine learning in SCA2, SCA3 and SCA6 

[18,19,42,43], but according to our knowledge, no work has 

been done in SCA12 to date. We explored a few machine learn-

ing models in SCA12’s structural MRI data to determine its role 

and efficacy to help the doctors diagnose accurately and 

quickly. To do so, we need meaningful and distinguishable fea-

tures to be extracted from raw brain volumes. Therefore, in this 

work, we investigate four different statistical and texture-based 

feature extraction methods [2,3,17] to determine their strength 

in distinguishing SCA12 patients from the control. The ob-

tained characteristic features are ranked, and a minimum set of 

appropriate features are selected using univariate feature selec-

tion. The Support Vector Machine (SVM) is used to construct 

the decision model for classification. The MRI samples used in 

Type 12 (SCA12) 
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this work has been collected at AIIMS, New Delhi, under the 

supervision of a senior neurologist and expert radiologist, main-

taining the quality of the samples using the standard protocols. 

This work focuses on extracting features efficiently, developing 

an effective and authentic decision model for computer aided 

diagnosis (CAD) of SCA12. 

Methods 

The proposed model entails four components: Data collection 

and preprocessing, feature extraction, feature selection, and 

classification. The given data was preprocessed using SPM12. 

This was followed by the application of four different Feature 

Extraction methods in 2D space to extract features. The set of 

relevant features were then ranked and chosen using FDR. The 

reduced feature set was then given as an input to the SVM to 

build decision model. 

Data Collection and pre-processing 

Subjects 

The subjects were recruited from the Neurology Clinics of a 

referral hospital. The patients were briefed about the study, and 

they had signed informed consent regarding the complete pro-

cess of diagnosis before the study. The healthy subjects re-

cruited were free from any known neurological deficits, while 

the SCA12 recruited subjects lacked any psychological discrep-

ancies, suggesting that the changes in brain volumes were only 

due to SCA12. The severity of the disease was recorded with 

the help of The International Cerebellar Ataxia Rating Scale: 

ICARS score [38] and CAG repeats [15] found in genetic test-

ing. The unpaired two-tailed two-sample t-test was used to infer 

that the difference between the gender and age of the two 

groups was insignificant. The details of age, sex, ICARS and 

CAG Repeat Length are described in Table I. 

Table I : Demographic details 

 
SCA 12 Patients 

(n=30) 

Healthy Con-

trols (n=30) 

Males / Females 21M / 9F 21M / 9F 

Age Range (in years) 33 - 60 34 - 61 

Mean ± Std 49.4 ± 7.9 49.4 ± 7.8 

TIV (in cm3) 1309.9 ± 102.7 1280.43 ± 99.9 

ICARS Score 28.63 ± 9.3 - 

Age at Onset (in 

years) 
45.76 ± 7.8 - 

CAG Repeat Length 56.83 ± 5.4 - 

Data Acquisition 

The 60 subjects: 30 controls (age: 49.4 ± 7.8), were without any 

previously known neurological deficits, and 30 SCA12 patients 

(age ± SD = 49.4 ± 7.9, range: 33 to 60) were recruited. The 

structural MRI data was acquired in a 3 T MR scanner (Ingenia, 

M/s Philips Healthcare) using 3D TFE T1 weighted sequence 

consisting of 350 slices, in sagittal orientation slices (of 1 mm 

acquired voxel size with -0.5 mm slice thickness, so that the 

reconstructed voxel size was 0.5 X 0.5 X 0.5mm3), TR/ TE: 

8.1/3.7 ms, echo spacing: 8.6 ms, FOV: 240 mm2 using a 32-

channel head coil with the subject in the supine position and 

restrained head to avoid any head movement. T2 (3D T2 FFE) 

was also acquired to rule out any morphological deficit (other 

than for SCA in patients). In general, morphological deficits or 

artifacts are observed in excessive motion cases. To verify their 

absence, all the brain images were checked by an expert radiol-

ogist. 

Data Pre-Processing 

For each anatomical image, the brain MRI images were con-

verted from DICOM (Digital Imaging and Communications in 

Medicine) to 3D Neuroimaging Informatics Technology Initia-

tive (Nifti) format using MRIcron (dcm2nii) [44]. Each T1 vol-

ume was manually reoriented using the Display option in Sta-

tistical Parametric Mapping (Ver. SPM12, v4667) software 

(Friston et al., 2005) on MATLAB platform (R2019a; The 

Math Works, Natick, MA, USA) to set the origin (0,0,0 coordi-

nates) along the anterior commissure (AC) – posterior commis-

sure (PC) line. After manual reorientation, all the images were 

preprocessed using expert mode in CAT12 (Computational 

Anatomy Toolbox) [11] of SPM12. The steps followed were 

according to the CAT12 manual [11]. The T1 images were nor-

malised to the space of MNI template and then segmented into 

gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF). 

Feature Extraction 

A feature may be defined as a discriminative, informative, and 

independent aspect, quality or attribute that may be representa-

tive or numeric. In the case of medical diagnosis, the features 

can be considered a pattern responsible for the disease or symp-

toms, a set of variables cataloguing the health conditions of a 

patient (e.g. fever, glucose level, etc.) [12]. The raw MRI vol-

ume is usually characterised by a massive number of features 

(voxels). Some of these (mostly those closer to blood vessels) 

may be noisy, redundant, and irrelevant. The presence of such 

features may deteriorate the recital of the decision system.  In 

machine learning, we initially find a minimal set of relevant 

features, which can distinguish two different kinds of patterns 

more effectively and improve the generalisation and interpreta-

bility of the decision system.  

Feature extraction is one method for reducing dimensionality, 

representing the data in another space to find a more meaningful 

and compact representation of the data. Since the features ex-

tracted contain relevant information, the task can be performed 

on this reduced set of features rather than the original dataset 

[20]. This helps reduce memory usage and computation time 

and enables us to overcome the situation when a classification 

method may lead to overfitting of training data.   

Some popular feature extraction techniques like First Order Sta-

tistics (FO), Gray Level Co-occurrence Matrix (GLCM), Gray 

Level Gradient Co-occurrence Matrix (GLGCM), Gray Level 

Run Length Matrix (GLRLM), etc. have been investigated in 

this work to find its suitability in distinguishing SCA12 from 

the control. 

First Order Statistics 

First-order statistics define the spread of voxel intensities 

within the image region using frequently used metrics like 

mean, median, mode, standard deviation, kurtosis, skewness, 

and mean average deviation. These measures are well known 

and commonly used. 

First-order statistics is employed on each 2D slice of the sub-

ject’s brain volume individually to obtain seven features. The 

features so obtained from all slices of a given volume are aver-

aged to form a feature vector for each measure. Each of these 

measures is then concatenated to represent the volume. After 

the features are extracted using first-order statistics for all the 
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subjects (patients and healthy controls), the feature set is nor-

malised so that the range is between 0 to 1. The method is 

named First_Order. 

Gray Level Co-occurrence Matrix 

The gray level co-occurrence matrix (GLCM) captures second-

order statistics where spatial relation between pairs of pixels 

with respect to each other are studied [17]. For this, (i, j)th ele-

ment of co-occurrence matrices corresponds to the number of 

occurrences of a pixel with intensity  at a distance  from 

another pixel with intensity  in the direction . Haralick and 

Shanmugam [13] proposed 14 measures to condense these ma-

trices to a few numbers to represent a given texture. Out of the 

14 measures, we exclude the Maximal Correlation Coefficient 

due to computational instability [39].  

2D GLCM is employed on each slice of the subject’s brain vol-

ume individually to obtain 13 features for each of the four di-

rections, i.e., 0,45,90,135. The features obtained from all the 

slices of a given volume are added. For each of the 13 features, 

the mean and range are computed from the four directions. The 

mean and range of features are concatenated to form a 1-dimen-

sional feature vector (total 26 features) corresponding to GLCM 

feature extraction step. After the features are extracted using 

GLCM for all the subjects (patients and healthy controls), the 

feature set is normalised so that the range is between 0 to 1. 

This whole process is carried out for three different gray levels: 

8, 16, 32. Thus, the methods are named GLCM_8, GLCM_16, 

GLCM_32. 

Gray Level Gradient Co-occurrence Matrix 

Gray level gradient co-occurrence matrix (GLGCM) is a vari-

ant of co-occurrence matrix that focusses on capturing the sec-

ond-order statistics of gray level gradient. Though both GLCM 

and GLGCM concentrates on capturing the second-order statis-

tics of local image features but GLCM concentrates only on 

capturing the second-order statistics of gray level values while 

GLGCM captures second-order statistics of gray level gradients 

[23]. The 13 Haralick features as described above are computed 

from GLGCM. 

2D GLGCM is similar to 2D GLCM. First, we calculate the 

image gradient of the 2D slice and then employ GLCM on each 

slice gradient of the subject’s brain volume individually to ob-

tain 13 features. The features obtained from all the slices of a 

given volume are added. These features are added together to 

find the mean and range of 13 features across the slices for each 

slice. The mean and range of features are concatenated to form 

a 1-dimensional feature vector (total 26 features) corresponding 

to GLCM feature extraction step. After the features are ex-

tracted using GLGCM for all the subjects (patients and healthy 

controls), the feature set is normalised so that the range is be-

tween 0 to 1. This whole process is carried out for three differ-

ent gray levels: 8, 16, 32. Thus, the methods are named 

GLGCM_8, GLGCM_16, GLGCM_32. 

Gray Level Run Length Matrix 

Gray Level Run Length Matrix (GLRLM) captures higher-or-

der statistics where spatial relation between pairs of pixels with 

respect to each other are studied. For this, we construct matrices 

by finding the number of occurrences of a consecutive number 

of pixels of length having the same intensity I in the same di-

rection. Initially, Galloway [10] introduced the concept of 

GLRLM but with a limited number of features which made this 

method less efficient compared to others [4,17,40]. Tang [41] 

proposed new features making it more efficient. A total of 11 

features are used to condense these matrices to a few numbers 

to represent texture. 

2D GLRLM is employed on each slice of the subject’s brain 

volume individually to obtain 11 features. The features ob-

tained from all the slices of a given volume are added. For each 

slice, these features are added together to find 11 features across 

the slices for each of the four directions i.e., 0,45,90,135. The 

features obtained from each direction are then concatenated to 

form a 1-dimensional feature vector (total 44 features) corre-

sponding to GLRLM feature extraction step. After the features 

are extracted using GLRLM for all the subjects (patients and 

healthy controls), the feature set is normalised so that the range 

is between 0 to 1. This whole process is carried out for three 

different gray levels: 8, 16, 32. Thus, the methods are named 

GLRLM_8, GLRLM_16, GLRLM_32. 

Feature Selection 

Only a subset of features might be relevant from the extracted 

set of features, while the rest might either be irrelevant, redun-

dant, or noisy. The feature selection techniques aim to define a 

feature subset of relevant features by eradicating redundant, ir-

relevant and noisy features without degrading performance 

[21]. Advantages of feature selection include dimensionality re-

duction of the feature space, decreased computation time, im-

provement in data visualisation, and an increase in classifica-

tion accuracy of the resulting decision model. 

The feature selection techniques may be classified as (a) the fil-

ter methods and (b) the wrapper methods. The former does not 

depend on the learning algorithms. In filter methods, we assign 

a score to feature(s). Then these features are ranked based on 

their scores. This ranking may be used to select or eliminate a 

given feature from the given set of features. The wrapper meth-

ods utilise a classifier to evaluate a subset of features. 

The filter methods may further be classified into the univariate 

and the multivariate selection methods. In the former score is 

assigned to each feature. Conversely, the multivariate feature 

selection method considers correlation to select the minimal 

subset of pertinent, essential, and non-redundant features. This 

study employs Fisher Discriminant Ratio (FDR), a univariate 

feature selection technique for choosing the features, which is 

computationally simple.  

Classification 

The dataset containing the chosen features serves as an input to 

the classifier. It is distributed into two fragments: the training 

and the testing data. Training data is used to build the decision 

model. It is a supervised learning approach in which a decision 

model assigns a class label to a new observation (test sample) 

[6,31]. This study employs Support Vector Machine (SVM) [5] 

for classification. The performance of the decision system is 

found using Leave-one out cross-validation (LOOCV) scheme. 

In each fold of this scheme, one sample is used as testing data 

while the rest of the samples are used as training data for the 

classifier. Therefore, the number of samples determine the num-

ber of folds in this scheme. This decision model is constructed 

starting with the first selected pertinent feature. To discover the 

effect of several features on classification accuracy of the deci-

sion model, the features are incrementally included in the order 

of relevance in building decision model. 

Performance Evaluation Parameters 

The performance measures, namely sensitivity, specificity, ac-

curacy, and F1-score, have been used to estimate the model's 

effectiveness. Accuracy is the ratio between the true forecasts 

and the total number of samples. The sensitivity tests how well 

positive cases (SCA12 patients) are properly identified by a de-

cision model from actual positive cases, i.e. all SCA12 patients 
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in practice. Specificity tests the sufficiently categorised nega-

tive cases (positive controls) out of the total negative cases, i.e. 

all healthy cases. The F1-score is the harmonic mean of preci-

sion and recall.  

Results 

Variation of classification accuracy with the number of features 

for GM volume has been shown in Figure 1. The graph shows 

the variations for features crafted from 10 different feature ex-

traction methods namely First_Order, GLCM_8, GLCM_16, 

GLCM_32, GLGCM_8, GLGCM_16, GLGCM_32, 

GLRLM_8, GLRLM_16 and GLRLM_32. 

 

Figure 1: Variation of Classification Accuracy for all Feature 
Extraction Methods used 

The classification accuracy, sensitivity, specificity, precision 

and F1-score obtained from data for different feature extraction 

methods is reported in Table II. The best performance value in 

the Table is shown in bold. 

Table II: Classification performance measures for the 
proposed model 

FE 
Gray 

level 
Accuracy Sensitivity Specificity 

F1-

Score 

First Order Sta-

tistics 
65 65.52 64.52 64.41 

GLCM 

8 70 75 66.67 66.67 

16 71.67 76 68.57 69.09 

32 71.67 76 68.57 69.09 

GLGC

M 

8 73.33 75 71.88 72.41 

16 73.33 75 71.88 72.41 

32 78.33 81.48 75.76 77.19 

GLRLM 

8 85 81.82 88.89 85.71 

16 83.33 81.25 85.71 83.87 

32 80 78.13 82.14 80.65 

Discussion 

We can draw the following observations from Figure 1 and Ta-

ble II:

� The GLRLM_8 method performs the best on this 

given data set for all the four performance measures 

used. 

� As can be observed from the figures that for all the 

methods, with the increase in the number of features 

there is an improvement in their accuracy, but it 

fluctuates after a particular number of features. 

Among all the methods GLCM_32 and GLGCM_32 

have an incrementing graph, thus being more stable. 

� The GLRLM (all cases) performs better in 

classification Accuracy, Specificity and F1-Score 

concerning other methods.  

� In general, the GLCM, GLGCM and GLRLM 

methods perform better than first-order statistics. We 

can consider neighbourhood information in these 

methods that are not captured in first-order statistics. 

GLRLM performs better as it captures higher-order 

statistics where it considers the immediate 

neighbourhood and a larger neighbourhood, which 

helps capture better statistics. 

For second-order statistics, higher gray level yields better re-

sults, but for higher-order statistics, the performance deterio-

rates. 

Since no machine learning method has been applied to date to 

distinguish SCA12 and control to best of our knowledge, we 

cannot compare our result. 

Conclusions 

The diagnosis of Spinocerebellar Ataxia Type 12 using auto-

mated methods has become the need of the hour, as the manual 

assessment of the disease requires more time, resources, and 

expertise. This work proposes a model which uses data consist-

ing of the sMRI images of 30 healthy and 30 SCA12 patients. 

The proposed model uses four different Feature Extraction 

methods to extract features from the given data. A univariate 

technique called FDR is used to select a set of pertinent features 

with reduced time complexity. This results in a reduced set of 

essential features. To craft a decision model to distinguish be-

tween healthy and SCA12 patients, SVM was used. The perfor-

mance of the model was gauged via accuracy, sensitivity, spec-

ificity, and F1-score. It was observed that using higher-order 

statistics, we were able to differentiate SCA12 from controls. 

GLRLM with gray level 8 and followed by feature selection 

using FDR provides better performance in terms of all four 

measures compared to existing methods. In future, this work 

can be extended to 3D Feature extraction methods where we 

can capture better neighbourhood information to construct a 

more relevant and minimal set of features to distinguish SCA12 

from the control.  
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