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Abstract 

Due to the presence of high glucose levels, diabetes mellitus 
(DM) is a widespread disease that can damage blood vessels in 
the retina and lead to loss of the visual system. To combat this 
disease, called Diabetic Retinopathy (DR), retinography, using 
images of the fundus of the retina, is the most used method for 
the diagnosis of Diabetic Retinopathy. The Deep Learning (DL) 
area achieved high performance for the classification of retinal 
images and even achieved almost the same human performance 
in diagnostic tasks. However, the performance of DL 
architectures is highly dependent on the optimal configuration 
of the hyperparameters. In this article, we propose the use of 
Neuroevolutionary Algorithms to optimize the hyperparameters 
corresponding to the DL model for the diagnosis of DR. The 
results obtained prove that the proposed method outperforms 
the results obtained by the classical approach. 
Keywords:  
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Introduction  

Diabetes mellitus (DM) [20], also known as diabetes, consists 

of a heterogeneous group of metabolic disorders, mainly caused 

by the presence of high blood glucose levels. Over time, diabe-

tes can lead to a visual impairment called Diabetic Retinopathy 

(DR) [12], which is a degenerative eye disease that progres-

sively damages the retina. Therefore, early diagnosis is a key 

factor in order to prevent the disease progression and permanent 

damage to the vision system.  

In this context, diabetic retina screening [9] is crucial to diag-

nose this eye disease in its early stages. Thus, increases the 

probabilities to halt DR degenerative progression. To this end, 

Ophthalmologists often use the Retinography method [10] to 

obtain and display color images of the fundus eye, including the 

retina and other structures. This method allows to verify and 

analyze the presence of DR-related lesions [30] such as hemor-

rhages, microaneurysms, hard and soft exudates.  

Currently, DR is considered the leading cause of visual loss in 

the world [37], with approximately 93 million people diag-

nosed. Considering the increasing worldwide prevalence of 

DR, there is a need to optimize DR detection procedures. There-

fore, it makes sense to propose the optimization of computer-

assisted early diagnosis of DR. 

DR consists of two types and four stages [39]. The two types 

correspond to non-proliferative (NPDR) and proliferative 

(PDR) Diabetic Retinopathy. NPDR corresponds to the initial 

stages, while PDR is an advanced stage. The four stages of DR 

correspond to:  

1. Mild NPDR: is associated with the occurrence of microan-

eurysms.  

2. Moderate NPDR: consists of a reduction in the blood sup-

ply capacity of the vessels that feed the retina.  

3. Severe NPDR: occurs due to an increased number of 

blocked blood vessels. 

4. PDR: is the most advanced stage of the disease, which in-

volves retinal detachment and permanent vision loss. 

In recent decades, computational power has increased consid-

erably with the development of new hardware and software 

technologies [18]. In consequence, new algorithms and compu-

tational paradigms have been proposed and implemented.  

Bio-inspired algorithms [6] such as Deep Neural Networks 

(DNNs) and Evolutionary Algorithms (EAs) have emerged and 

proven their worth with successful results that have reached and 

even surpassed the state of the art of many classical techniques 

in related fields. 

DNNs are brain-inspired models [24] used for many tasks such 

as image, audio, speech processing, medical image analysis, 

etc. Deep Learning (DL) is a particular type DNN  that has been 

very successful in image classification tasks [28] allowing the 

generation of new applications in the field of medical image 

processing [29]. In particular, DL techniques have been applied 

for the analysis and classification of fundus images. Research 

works in this field, include blood vessel segmentation [22], DR 

classification [21],  DR grading [23] and interpretative visual 

maps [19]. 

Optimal performance of DNNs models depends on the correct 

hyperparameters settings [27], which is a major challenge due 

to the usually large number of hyperparameters present. More-

over, considering the non-existence of an explicit methodology 

for hyperparameters optimization (HPO). Nevertheless, some 
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of the most popular used HPO methods [38] are random, man-

ual and grid search, as well as Bayesian, Gradient-based and 

Evolutionary Optimization procedures. 

EAs are based on evolutionary biology [2], which are used to 

solve problems of searching and optimization. In this regard, 

Genetic Algorithms (GA) [26] mainly consist of an iterative 

process to find optimal solutions.  

The Genetic Algorithm was inspired from the Darwinian theory 

of evolutionary, in which the survival of fitter creature and their 

genes were simulated [26]. GA process starts with an initial ran-

dom population, where each individual is evaluated by a fitness 

function, the best individuals are enabled for the crossover step, 

and then certain genetic mutations are applied to the offspring 

in order to achieve a better adaptation to their environment. The 

process ends when the stop criterion is reached. 

Neuro-evolution [14] is a term that refers to the use of EAs to 

optimize the configuration and training of DNNs. Many previ-

ous works in the literature use EAs to train or optimize DNN 

Architectures [3, 11, 38]. From our understanding, the use of 

Neuro-evolutionary Algorithms (NA) has not previously been 

used to improve DL models for DR diagnosis. 

In this work, our proposal is a methodology using an evolution-

ary optimization procedure for the HPO of DNN with the aim 

of improving the binary classification rates of fundus images, 

for automatic diagnosis of DR. 

Methods 

This section includes details about the data set used in this re-

search, as well as descriptions of the implemented algorithms 

and the proposed optimization procedure. 

Dataset 

The data set used [4] in this research corresponds to 1,135 color 

fundus images collected at the Department of Ophthalmology, 

Hospital de Clínicas, Facultad de Ciencias Médicas (FCM), 

Universidad Nacional de Asunción (UNA), Paraguay. The ac-

quisition of the Retinographies was carried out using a Zeiss 

brand camera, model Visucam 500. Each image was captured, 

classified and labeled by experienced ophthalmologists. In Fig-

ure 1, can be seen some images obtained from the database. 

The set of fundus images was divided into two independent data 

sets of images, the training set including 1,021 images and the 

test set with 144 images. In this work, 2 classes are considered: 

patients with DR and healthy patients (NO DR). In Table 1, the 

number of samples is detailed by classes. 

Table 1 – Number of Samples 

Classes Train- 
Validation Test Total 

DR 513 57 570 

NO DR 508 57 565 

Total 1021 144 1135 

 

Residual Neural Networks 

Deep Convolutional Neural Networks have demonstrated their 

effectiveness in tasks related to feature extraction and classifi-

cation [28]. Nevertheless, one of the main drawbacks related to 

very deep networks is the vanishing gradient. To avoid 

this,  Residual Networks (ResNet) have been proposed in [16]. 

ResNet can basically be defined as a type of neural network that 

applies identity mapping, which means that the input from some 

layer is passed directly or as a shortcut to another layer. In this 

way, it has been possible to increase the performance of neural 

networks with a very high number of layers. 

Figure 1 – Images of retinal fundus obtained from the dataset. 
(a, b) correspond to healthy and (c, d) unhealthy. 

 

Transfer Learning 

The Transfer Learning (TL) [36] technique is a very useful ap-

proach based on leveraging knowledge acquired by pre-trained 

models for similar tasks. Commonly used in the fields of Com-

puter Vision and Natural Language Processing. 

The main advantage of the TL is time saving and the possibility 

to achieve useful results without the need for a large training 

data set. 

Fine tuning 

Training a neural network with a small amount of data for train-

ing can affect the generalization capabilities of the model, 

which can lead to a situation known as overfitting. Basically, it 

means that the generated model dramatically decreases its per-

formance with unknown data.  

The fine tuning (FT) technique [35] consists of freezing a cer-

tain number of layers of the network on the training step. Tak-

ing into account that the frozen layers have previously learned 

to extract universal features, allowing their reuse for similar 

problems. This proposal is very useful in order to avoid over-

fitting. 

Evolutionary Optimization 

Nowadays, facing with optimizations problems is very com-

mon [33]. Heuristic algorithms are a valid alternative with suc-

cessful results for solving these problems. In this sense, EAs are 

inspired by the process of natural selection with the objective 

of obtaining the optimal solutions for the problem at hand. 

Optimization problems may involve one or more objectives that 

may be subject to certain constraints. When more than one ob-

jective is considered, these objectives are often in conflict at the 

same time [15]. 

In this study, the EA implemented for the optimization process 

is a Genetic Algorithm [5]. This choice is motivated by the fact 

that only one objective (classification accuracy) is considered 

for this proposal. 

The encoding of chromosomes, and genetics operators are spe-

cific to this optimization approach.  

The Optimization Procedure 

This research involves supervised learning, where the main ob-

jective is the optimization of ResNet architecture to achieve 

higher binary classification accuracies for DR diagnosis. Figure 

2 shows the main components of the proposed model.  

The essential component corresponds to a GA, which is the EA 

selected to perform the single-objective optimization. 
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The encoding of the Chromosome corresponds to 4 genes:  

� Dropout rate [34]: consist of the rate of neurons in 

the network that are randomly deactivated during the 

training process. 

� Number of Trainable Layers: indicates the layer 

number from which the weights will be readjusted 

during the training process. 
� Learning Rate (TL/FT): determines the step size at 

each iteration of the gradient descent during the trans-

fer learning process (TL) and during the fine-tuning 

process (FT) respectively. 
All of the genes are of numeric type and within a limited range 

of alternatives, which allows speeding up the search process. 

Figure 3 shows the chromosome encoding process. 

Figure 3 – Chromosome Encoding  

 

The Fitness Evaluation corresponds to training of the Residual 

Neural Network, where the output value is given the binary 

classification accuracy.  

Table 2 lists the parameters used for the GA algorithm. 

The Genetic Algorithm optimization process ends when the to-

tal number of generations is reached or if the stop criterion is 

met. The stop criterion [31] is given when the maximum fitness 

value has not changed in at least seven consecutive generations. 

 

 

Table 2 – GA Parameters 

Parameters Value 

Population size 100 

Number of generations 30 

Chromosome length (genes) 4 

Mutation probability 0.05 

Crossover probability 0.75 

Results 

In this section, we present the results obtained for the ResNet 

50v2 Optimization. 

Experiment Setup 

The implementation code was written in Python 3.7.10. In ad-

dition, several libraries available for this language have been 

used, such as TensorFlow [1] and DEAP [13]. 

The experiments were performed on the Google Cloud plat-

form, which provides a NVIDIA Tesla K80 GPU, two Intel 

Xeon Skylake virtual CPUs and 13 GB of RAM. 

The dataset was divided into three sets, training, validation and 

testing. The training dataset has been used to the neural net-

work, while the validation set was used to evaluate the loss and 

the accuracy through each epoch. The transfer learning process 

was performed first, by readjusting the weights of the last layer 

of the base network. After the transfer learning process has 

ended, the testing dataset was used to evaluate the performance 

with unseen images. 

Afterwards, the fine-tuning process has been performed. In this 

step, the learning rate is lowered and multiple layers of the neu-

ral network are retrained. 

Both of these processes have been run multiple times during the 

evaluation of each individual by the evolutionary algorithm. 

The base neural network model employed was the ResNet 50v2 

[17], with average pooling layer and an added dropout layer for 

regularization. The optimized hyperparameters are then the 

dropout rate, the learning rate of the transfer learning process, 

the learning rate of the fine-tuning process and the number of 

trainable layers (used during the fine-tuning process). 

Figure 2 – Schema of the Neuro-evolutive Algorithm for DR detection 
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Experiment Results 

Neuro-evolutive optimization experiments have been con-

ducted using the ResNet 50v2 as a starting point for the optimi-

zation process. 

Tables 3 and 4 show the results obtained with different neural 

networks and the optimized solutions provided by our proposal, 

where it can be seen the improvement obtained in the accuracy 

from the optimized models with respect to the original (base-

line) ResNet 50v2 [17], ResNet 101v2 [7], Xception [8], Mo-

bilenet v2 [32]. The ResNet 50v2 was chosen as a baseline as it 

performed well and the training time was one of the lowest 

among the tested networks. 

Table 5 shows the optimized parameters that were obtained 

once the Evolutionary Algorithm reached the stop criterion. 

Both solutions obtained good results with a dropout rate of 0.4 

and with a learning rate of 0.00001. The selected optimal solu-

tion required more training time as it had a lower learning rate 

during the transfer learning and it retrained 90 layers in the fine-

tuning process. 

Table 3 – Binary Classification results I 

Model Accuracy (%) Time (s) 

ResNet 50v2 (baseline) [17] 82.46 29 

ResNet 101v2 [7] 87.72 49 

Xception [8] 83.33 30 

Mobilenet v2 [32] 78.07 22 

Optimized Solution 1 93.86 56 

Optimized Solution 2 94.73 51 

Table 4 – Binary Classification results II 

Model Sensitivity (%) Specificity (%) 

ResNet 50v2 81.48 86.67 

ResNet 101v2 84.31 85.71 

Xception 83.33 81.82 

Mobilenet v2 90.00 78.38 

Optimized Solution 1 91.67 96.30 

Optimized Solution 2 93.10 94.64 

Table 5 – Optimized Hyperparameters 

Hyperparameter Solution 1 Solution 2 

Dropout 0.4 0.4 

Trainable Layers 90 64 

Learning Rate (TL/FT) 0.001/0.00001 0.01/0.00001 

Discussion 

Both of the optimized solutions show a substantial improve-

ment in classification performance over the baseline and the 

other three different neural networks tested.  

According to the standard criteria [25] established in the UK on 

tests of retinal screening for diabetics, the minimum required 

for sensitivity is 80% and specificity is 95%. 

The optimized solution 2 performs better when taking into ac-

count the accuracy percentage. However, in order to fit the UK 

audit standard, only the optimized solution 1 fits requirements 

for sensitivity and specificity. 

Conclusions 

In this research a procedure based on neuro-evolutionary algo-

rithms for the optimization of hyperparameters of Deep Neural 

Networks is proposed in order to improve DR detection in reti-

nographies. For this purpose, a reduced set of fundus images 

has been used in the application of the transfer learning and 

fine-tuning processes. 

The results obtained by the proposed method demonstrate its 

validity in the detection of Diabetic Retinopathy (DR) by 

achieving an accuracy of 93.8% while also complying with the 

UK audit standards for screening tests with a sensitivity of 

91.6% and a specificity of 96.3%. It is important to emphasize 

that the dataset is part of one of the open databases obtained at 

Hospital de Clínicas de Asunción, Paraguay. 

Future work will focus on multiclass classification and optimi-

zation of other neural network architectures, thus allowing a fu-

ture comparison between different architectures in different ar-

eas. 
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