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Abstract 

Infant mortality is characterized by the death of young children 
under the age of one, and it is an issue affecting millions of 
children in the world. The objective of this article is to employ 
concepts of knowledge discovery in databases, specifically of 
machine learning in the data mining phase, to characterize 
infant mortality in two states of Brazil: Santa Catarina, with the 
lowest infant mortality rate of the country's states, and Amapá, 
with the highest. The classifiers C4.5, JRip, Random Forest, 
SVM, and Multilayer Perceptron were used, and a brief 
comparison of the results obtained by the classifiers in both 
states is made. In addition, the dataset preprocessing is 
detailed, which includes attribute selection and class 
balancing. The results show that the features APGAR5, 
WEIGHT, and CONGENITAL ANOMALY stood out the most 
from the rules generated by the tree-based classifiers. 
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Introduction 

Infant Mortality (IM) is a term used to designate the death of 
children during the first year of their lives, a worrying situation 
that happens around the globe, more often in developing coun-
tries where, for instance, lack of basic sanitation causes water 
and food contamination, leading to malnutrition and several 
diseases spreading. 

The metric used to define the death toll is the Infant Mortality 
Rate (IMR), the number of deaths of children under one year of 
age per 1000 live births for a given population and year. Thus, 
the IMR is an indication of the risk of a live birth child being 
deceased before completing their first year of life. High values 
of this metric reflect, in general, poor health and living condi-
tions and poor socioeconomic development. 

Infant mortality can be divided into neonatal and post-neonatal 
periods, depending on the age of the child. Neonatal mortality 
refers to deaths that occurred in a child’s first four weeks of life 
(0 to 28 days), and it is further divided into early neonatal (0 to 
7 days lived) and late neonatal (7 to 28 days lived). Post-neo-
natal mortality refers to deaths that occurred after the first 28 
days, up until the child's first-year completion [11]. 

These subdivisions are essential since it is possible to investi-
gate IM causes at different stages of a child’s life. For instance, 
the most frequent neonatal mortality causes are related to ges-
tation, labor, and genetic factors; in the post-neonatal stage, 
death is more commonly caused by life conditions and family 
characteristics [9]. Approximately 50% of child deaths occur 

during the early neonatal stage, and this number reaches 66% 
when including the late neonatal stage [11]. 

In Brazil, according to the Brazilian Institute of Geography and 
Statistics (IBGE, from the Portuguese: “Instituto Brasileiro de 
Geografia e Estatística”), the IMR has been steadily declining 
in the country, as a result of improvements in social and eco-
nomic factors [4], falling from 51 in 1990 to 15 in 2015. How-
ever, according to UNICEF’s 2015 report, regional inequalities 
are responsible for the IMR in Brazil being the third more sig-
nificant over Latin American nations.  

Several projects have been proposed in Brazil to reduce child 
mortality. Consider, for example, the Rede Cegonha Project, 
presented by the federal government in 2011, which has the par-
ticipation of all levels of government (federal, state, and munic-
ipal) and whose funding is shared between them. The project 
aims to provide health and quality of life to women during preg-
nancy, childbirth, and postpartum. It also monitors the develop-
ment of children up to two years old. 

According to information from the Brazilian Ministry of 
Health, the Rede Cegonha Project currently covers 5,488 mu-
nicipalities (98.5% of all cities in the Brazilian territory). It has 
taken care of 2.6 million pregnant women. Since 2011, the in-
vestments to carry out the actions of this project exceed R\$ 3.1 
billion. In 2013, for example, 18.9 million prenatal consulta-
tions were performed by the SUS (SUS, from the Portuguese: 
''Sistema Único de Saúde'' - the Brazilian health system contrib-
uting to the reduction of maternal and child mortality. 

Another important aspect is that the Brazilian Health Ministry 
also encourages municipalities to finance Pregnant, Baby, and 
Puerperal Houses (CGBP). GBCBs are places designed to re-
ceive women and babies who need care without necessarily be-
ing hospitalized. Another significant action was the expansion 
of care centers for high-risk pregnant women, with the creation 
of (regular and neonatal) intensive care units (ICUs) to promote 
the health of women and newborns. 

A world ranking of IM was developed in 2017. This ranking 
can be used for a comparative analysis of Brazil concerning 
other countries. The top of the ranking is occupied by countries 
with the highest IMR: Afghanistan with 111 deaths per 1000 
live births, and Somalia with 95. The countries with the lowest 
ranking are Monaco and Japan, both with two deaths per 1000 
live births. In this ranking, Brazil occupies the 88th position. 

The study of IMR can reveal which aspects need to be improved 
in a population so that the ratio can be reduced, which is a de-
cisive factor for a country’s development. From a scientific and 
social standpoint, IM can be used to evaluate communities and 
health policies adopted in a given region [1]. Furthermore, IM 
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studies can reveal details on aspects such as health conditions 
of a population and the relationship between social inequality 
and IM and level of access of services IM [6]. 

The Brazilian government created the Mortality Information 
System (SIM, from the Portuguese: “Sistema de Informações 
sobre Mortalidade”) in 1975, and the Live Birth Information 
System (SINASC, from the Portuguese: “Sistema de In-
formações sobre Nascidos Vivos”) in 1990, aiming to collect 
data on IM. Both systems of epidemiological rationality gained 
notoriety for distributing essential data for the calculation of 
health monitoring indexes and the evaluation of government 
programs. 

In this context, this study aims to characterize IM using data 
from the SIM and SINASC systems, considering two Brazilian 
states: Santa Catarina (SC), with higher income, and Amapá 
(AP) with lower income, which have, respectively, the lowest 
and highest IMR values in the country. It is essential to mention 
that Brazil has 27 states with deep inequalities and over five 
thousand cities distributed in a continental territory. One of our 
objectives is to evaluate public policies and actions considering 
two conditions with highly contrasting social and economic 
characteristics. In 2018, SC’s per capita income was R$ 1597 
(about $302), and AP’s per capita income was only R$ 857 
(about $162). 

To perform the evaluation, we used data available in the 
SINASC and SIM systems, which record epidemiological in-
formation on reported births and deaths - specifically in 
SINASC, we can find information related to the health of 
women and children. The main objective is to obtain a classifi-
cation model for living and dead children, considering two Bra-
zilian states with very different incomes. 

To classify the dataset, we compared five classifier algorithms: 
C4.5, JRip, Random Forest, Support Vector Machine (SVM), 
and Multilayer Perceptron, based on Artificial Neural Networks 
(ANN). The C4.5 and JRip can describe classification rules 
(higher interpretability), while Random Forests highlight the 
essential features in the classification process. Thus, this study 
evaluated rules and their characteristics, identifying the main 
factors contributing to the IMR in both states. The SVM and 
ANN classifiers, although not interpretable, usually obtain 
good classification results. All algorithms were compared to de-
termine the best one to be used in this context. Our results also 
made it possible to suggest changes in public policies in both 
states to reduce child mortality. 

Materials and Methods 

The following tasks were performed to characterize IM in the 
Brazilian states of Santa Catarina (SC) and Amapá (AP): da-
taset creation and preprocessing; application of the five classi-
fiers: C4.5 using the VTC4.5 plugin1, JRip, Random Forest, 
SMO e Multilayer Perceptron results analysis and analysis of 
each decision tree for comparison. 

Dataset Description 

The dataset on infant mortality has been obtained from the 
DATASUS2 website, considering the instances between 2006 
and 2016 (for each year and each Brazilian state, the 
DATASUS updates information on SIM and SINASC). Figure 
1 presents the IMR of all Brazilian states in the considered 
timeframe. 

 
1 Plugin available at http://www.ri.fzv.um.si/vtC4.5/. Ac-
cessed in May 2021. 

Figure 1 - IM rates in Brazil from 2006 to 2016 

 

It is noticeable that SC and AP present, respectively, the lowest 
(9.58) and highest (18.48) infant mortality rates than other Bra-
zilian states, which justifies our choice of working with data 
from these two states in our case study. 

In the data preprocessing stage, instances were labeled as fol-
lows: instances present in SIM and SINASC were labeled as 
“Infant Death”. The other SINASC instances kept their label as 
“Living”. The 17 features of the SINASC dataset are presented 
in Table 1. 

Table 1 - SINASC database features. 

Features Description 
Mother’s age In years 
Mother’s schooling In years  
Number of living children Numerical continuous  
Number of deceased children Numerical continuous  
Pregnancy Single, Double, Triple or more 
Gestation In weeks  
Labor Normal, Cesarean 
Weight In grams, on birth  
Sex Masculine, Feminine 
Race White, Black, Asian, Hispanic, 

Native-Brazilian 
Childbirth Local Hospital, Home, Others 
Marital State Single, Married, Divorced, 

Widowed 
Mother’s occupation Numerical continuous  
Number of prenatal medical 
appointments 

1 to 3, 4 to 6 

APGAR1 Numerical continuous  
APGAR5 Numerical continuous  
Congenital Anomaly No anomaly, Anomaly 
Class Label Living, Infant Death 

Data Preprocessing 

After creating the dataset with information from a living and 
deceased infants, we performed the following preprocessing 
tasks: 

1. Eliminated inconsistent instances: We removed 
samples from SIM and SINASC, which were equal but 
had different classifications. 

2. Eliminated redundant instances: Only one occurrence 
for each example was kept in the dataset. 

3. Transformed numerical attributes: As the upper and 
lower limits of feature values in the numerical features 
were different, we applied a normalization technique to 
avoid skewing in the SVM and ANN algorithms [10]. 

4. Applied a symbol-numeric conversion: Techniques like 
ANN and SVM can only receive numeric features as 

2 Available at www.datasus.saude.gov.br/ 
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inputs. As our dataset, described in Table 1, had some 
discrete features, it was necessary to transform those. 
Non-ordinal nominal attributes such as ‘Labor’ (with 
options ‘Normal’ and ‘Cesarean’), were transformed 
into binary features. That meant that these features 
became sets of binary features detecting the presence 
or absence of each type of labor. This transformation 
has been made for for all non-ordinal nominal 
attributes. 

5. Eliminated noisy instances: Noisy instances contain 
values that do not correspond to the natural distribution 
of the data. In our study, the following noisy data were 
found: Mother’s age over 75 years, number of both 
living and deceased children equal to or greater than 
75. Therefore, since we did not have access to the 
actual values of those features, the instances referring 
to these noisy values were removed from the dataset. 
All these preprocessing tasks were performed to create 
a single dataset representing reliable information on 
examples from both ‘Living’ and ‘Infant Death’ 
classes. However, as the number of instances of each 
class was disproportional (Table 2), we performed a 
class balancing as the last task of our preprocessing 
phase. 

Table 2 - Dataset dimensions prior to and after class 
balancing 

 Before balancing After balancing 
 Santa 

Catarina 
Amapá Santa 

Catarina 
Amapá 

Living        92558       13079        501 152 
Infant 
death      

501        152            501        501        

 

Class balancing: An issue that frequently harms classifier per-
formance is an imbalance of classes in the dataset, which leads 
to a statistical overpowering by the majority class over the mi-
nority class. Frequently, a class imbalance scenario leads to a 
classifier being skewed towards the majority class. There are 
two approaches to deal with the class imbalance in a dataset: 

1. Oversampling: consists of replicating existing 
instances from the minority class or creating artificial 
ones. This approach can incur the inclusion of cases 
with values that would not occur in a real dataset. 

2. Undersampling: consists of the elimination of instances 
from the majority class. This approach can incur the 
removal of relevant data, which can hinder the 
classification model’s performance. 

We verified, in our dataset, a significant class imbalance be-
tween the ‘Living’ and ‘Infant Death’ classes. Observing Table 
2 shows that the imbalance reaches 169.2% and 107.9% for the 
Santa Catarina and Amapa states, respectively. To cope with 
that, we opted for the undersampling approach. 

Classifiers Configuration 

We employed the J48 algorithm, an open-source implementa-
tion of the C4.5 Decision Tree in the WEKA tool, to construct 
our classifier. Among the parameters set by the users, such as 
the confidence level C, and the minimum number of leaf in-
stances M. We used the VTJ48 package to adjust these param-
eters, developed by [2], which automatically adjusts these pa-
rameters, leading to smaller (easily interpretable) decision 
trees. The final values for the C and M parameters were 

C=0.078125 and M=2, for the Santa Catarina dataset, and 
C=0.03125 and M=2 for the Amapá dataset. 

The JRIP algorithm ran with its default parameters, with a seed 
value of 1, the number of optimization runs being two, and 
minNo (the minimum total weight of the instances in a rule) be-
ing equal to 2.  

Regarding the Random Forest algorithm, the following param-
eters were optimized: numIterations, the number of trees com-
posing the forest; numFeatures, the number of attributes ran-
domly selected at each internal node; and maxDepth, the maxi-
mum depth of the tree. The parameters were adjusted with the 
MultiSearch tool, which performs an exhaustive search on the 
specified parameters and find the best combinations for the in-
put dataset. The selected parameter values were numIterations, 
numFeatures and maxDepth equal to 60, 2 and 5 for the Santa 
Catarina dataset, and 180, 2 and 12 for the Amapá dataset, re-
spectively.  

For the training of the SVM classifier, we utilized the sequential 
minimal optimization (SMO) algorithm [3]. The chosen Kernel 
function was the polinomial and the following parameters were 
adjusted: degree, gamma and coef0. The hyperparameters of the 
SMO algorithm were also adjusted using the MultiSearch, and 
the resulting values for the parameters were degree=1, 
Gamma=0,25 e Coef0=1 for the Santa Catarina dataset, and de-
gree=1, Gamma=0,125 e Coef0=1 for the Amapá dataset. 

Finally, when training the ANN, we utilised the Multilayer Per-
ceptron with Backpropagation, and optimised the following pa-
rameters: hiddenLayers, learningRate and momentum. We 
chose to create hidden layers with 2n+1 neurons [5], resulting 
in 109 neurons in the intermediate layers (n=54). For the output 
layer, we used 2 neurons, one for each class value. The param-
eter values defined after a series of experimentations were: hid-
denLayers=1, learningRate=0.6 and momentum=0.5 for the 
Santa Catarina dataset, and hiddenLayers=2, learningRate=0.6 
and momentum=0.5 for the Amapá dataset. 

Results 

To evaluate the quality of the classification models, we em-
ployed the Precision, Recall, and F-measure metrics. We used 
10-fold cross-validation in our training for each algorithm to 
evaluate the generalization capabilities of the model [8]. 

As shown in Table 3, the Random Forest, SVM, and ANN al-
gorithms had the best results. SVM and ANN usually perform 
better for many complex problems than less complex algo-
rithms such as the C4.5 and JRip. However, they have the dis-
advantage of low interpretability. In this context, the C4.5 and 
JRip, which explicitly convey knowledge through decision 
rules, had their results considered satisfactory for characteriz-
ing child mortality, as their metrics had similar values. 

Analyzing the harmonic mean of precision and recall presented 
by the F-measure metric, the mean value over all algorithms 
was above 85% for both datasets. It is also noticeable that the 
recall of the ‘Child death’ class is slightly lower than that of the 
‘Living’ class for all algorithms (and its precision is marginally 
higher, as a trade-off). This indicates that the classifiers are of-
ten wrongly classifying instances on the ‘Living’ class, suggest-
ing that some of the newborns had characteristics of this class 
but did not survive. 
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Table 3 - Percentage results from C4.5, JRip, Random Forest, 
SVM and ANN. 

 
After evaluating the quality of the classification models, we 
also analyzed the main rules obtained with the C4.5 and JRip 
algorithms, describing both classes. These rules are presented 
in Tables 4 and 5. 

 

Table 4 - Main rules generated by the C4.5 and JRip, for the 
AP dataset 

 

 

Table 5 - Main rules generated by the C4.5 and JRip, for the 
SC dataset 

 

 

Discussion 

From the rules extracted from the Amapá dataset (see Table 4), 
we observed that newborns with a weight lower than 2300 
grams were classified as Child deaths. This rule alone classified 
63% of the instances in this class for the C4.5 decision tree and 
61% for the JRip. Regarding the ‘Living’ class, 92% of the 
cases were classified as Living in the C4.5 tree from having a 
weight greater than 2300 grams and an APGAR score on the 
5th minute greater than 8. The JRip classified as Living the 
newborns with over 2300 grams with a first minute APGAR 
score above 7, a rule which covered 89% of the instances in this 
class and corroborated what was claimed in [1]. 

In the rules extracted from the Santa Catarina dataset (see Table 
5), 65% of instances were classified in the ‘Child death’ class 
by the C4.5 algorithm when their APGAR1 score was smaller 
than 7. If the score is greater than 6, the newborn does not have 
a congenital anomaly, and their weight is smaller than 1535 
grams, they were classified in the ‘Child death’ class, a rule 
corresponding to 7% of instances in this class. For the ‘Living’ 
class, 95% of the cases from this class had their APGAR1 score 
greater than 6, no congenital anomaly, and weighted more than 
1535 grams. Notably, the JRip algorithm has found more rules 
describing the newborns from the living class in the SC dataset, 
i.e., the six main rules presented in the Table covered 92% of 
the instances in this class, but each of them has a lower cover-
age than 30%. The following attributes were used in these rules: 
APGAR5, gestation time, number of living children, weight, 
APGAR1, congenital anomaly, and mother’s schooling. 

We observed that the attributes composing the rules in the AP 
dataset are: Weight, APGAR5, APGAR1, and gestation time. 
For the SC dataset, in addition to each of those, more attributes 
were used: the presence of congenital anomaly, the number of 
living children, and mother’s schooling. 

Based on the rules described in both Tables 4 and 5, we ob-
served that weight and APGAR1 score were the essential attrib-
utes for classifying newborns as ‘Living’ for both states. We 
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also noted that the minimum weight value used by the C4.5 al-
gorithm was more considerable in the AP dataset (2300 grams) 
than in the SC dataset (1535 grams), and other attributes were 
considered in the SC dataset to make the classification of a new-
born as Living. Therefore, newborns that survived in the 
Amapá state, which has lower income, needed to have a greater 
weight when born than the newborns in Santa Catarina, which 
suggests that the survival conditions in AP are worse than in 
SC, as expected. 

In addition to the attributes identified in the C4.5 and JRip mod-
els’ rules, we also investigated the most important characteris-
tics for the Random Forest model, according to its internal fea-
ture importance measure. Among the main attributes common 
to both datasets were: weight, mother’s age, gestation time, 
number of living children, APGAR1, APGAR5, and mother’s 
schooling.. 

Conclusions 

In this paper, we aimed to characterize, through rules, newborns 
into the ‘Living’ and ‘Child death’ classes, on our study about 
the child mortality problem in two different states in Brazil, 
with low and high income. To achieve that, we employed the 
C4.5, JRip, Random Forest, SVM, and ANN algorithms. 

With the results obtained in this study, and considering the pub-
lic policies of health already adopted in Brazil, we would sug-
gest the Rede Cegonha project to begin including actions focus-
ing on observing mothers affected with any disease in the peri-
natal period and a more intensive accompanying of the new-
born’s health status in the following cases: prematurely born 
babies, babies with conditions originating in the perinatal pe-
riod, or congenital anomalies, babies that scored low on the 
APGAR score when born, and babies with low weight. 
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