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Abstract 

Complex breast cancer cases that need further multidiscipli-
nary tumor board (MTB) discussions should have priority in the 
organization of MTBs. In order to optimize MTB workflow, we 
attempted to predict complex cases defined as non-compliant 
cases despite the use of the decision support system OncoDoc, 
through the implementation of machine learning procedures 
and algorithms (Decision Trees, Random Forests, and 
XGBoost). F1-score after cross-validation, sampling imple-
mentation, with or without feature selection, did not exceed 
40%. 
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Introduction 

Multidisciplinary tumour boards (MTBs) are a staple for man-

aging cancer patient treatment. Patient-specific treatment plans 

as recommended by clinical practice guidelines (CPGs) have 

improved patients’ outcomes and clinicians are encouraged to 

follow them [1]. 

Oncodoc is a guideline-based decision support system devel-

oped to provide patient-specific recommendations and promote 

CPG implementation for breast cancer management. When On-

coDoc was routinely used in MTBs at the Tenon hospital (Paris, 

France), CPG compliance reached 91.7% for invasive breast 

cancer [2].  

Thus, despite the use of Oncodoc, non-compliant cases were 

observed. We consider those cases as “complex cases”, since 

they are not standard enough to be covered by CPGs and con-

sequently should have priority in MTB discussions. 

Our objective is to implement machine learning methods to 

identify patients not handled by CPGs and optimize patient tri-

age ahead of MTBs. This way, non-complex cases might be 

treated faster with the support of a CDSS, and more time could 

be allocated to complex cases. We tested a wide selection of 

models and sampling techniques and compared their perfor-

mance with recall and precision to select the most efficient 

combination. 

Methods 

Data was collected from the existing OncoDoc database, and 

included MTB decisions for adult women treated for breast can-

cer from February 2007 to September 2009. Data consisted of 

1,887 MTB decision instances (1,054 patients) with 127 col-

lected variables. A sizable amount of variables was incomplete 

due to Oncodoc’s architecture as a decision tree: non-relevant 

data to the case is not asked, and therefore not entered.  

We applied supervised machine learning, with labelled training 

datasets and all values predicted from the test datasets verified 

against the actual class. Cases where clinicians did not comply 

with OncoDoc recommendations were labelled as “complex” 

and cases where OncoDoc recommendations were followed by 

MTB clinicians as “non-complex”.  

Whenever possible, missing values were assigned so as to re-

main logically sound, e.g., when a tumour was non-invasive, all 

tumour-invasive-related variables were filled as “not applica-

ble”. All missing or “not applicable” values were also consid-

ered as integers: excision margins outlying invasive tumour 

were originally coded as invaded (1) or not (0) and were even-

tually encoded as Missing (0), Not applicable for non-invasive 
tumour (1), Non-invaded (2) and Invaded (3). Additional vari-

ables were built to reflect factors of clinical complexity known 

from the literature, e.g., triple negative breast cancer patients 

(hormonal receptors = negative AND Her2 = negative).  

The final processed dataset is comprised of 1,887 instances and 

70 variables. 

The following standard procedures were applied: 

� Stratification on complexity to keep the original da-

taset class ratio in the train-test datasets.  

� With k-fold cross-validation: the training set is split 

into k sets (here, k=5). Each of the k folds is used as 

test set against the rest, and model performance is 

given by the averaged scores. 

Since data was severely imbalanced with few complex cases 

(7.5%), we tested the following samplers on each trainset gen-

erated for cross-validation, in order to offset data imbalance: 

random under sampling (RUS), random over sampling (ROS), 

SMOTE, ADASYN, and SMOTE and Edited Nearest Neigh-

bours (SMOTEEN) [3]. 
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The following classification models were trained and tested: 

Decision Trees (DT), Random Forests (RF) and XGBoost 

(XGB) [4, 5]. We narrowed down the best value for each 

model’s hyperparameters using Random Search and Grid 

Search. Random Search finds a broad range of optimized pa-

rameters after testing random combinations of parameters and 

Grid Search then narrows down the hyperparameters through 

systematic testing. We then selected the most useful variables 

for each model using feature selection.  

We used precision, recall, and F1-score for model evaluation. 

Accuracy was considered to be unreliable as the test set was 

unbalanced (if 90% of data belong to class A, a model might 

simply choose to systematically class data as class A to obtain 

a 90% accuracy). We compared the mean cross-validation 

scores for each sampler/model combination. (cf. Figure 1).  

Results 

Decision Trees and Random Forests presented best F1 score 

with the ROS sampler (DT: 37.4%, RF: 33.5%), and XGBoost 

performed best with the RUS sampler (38.1%). XGB presented 

overall better results than DT and RF but was still insufficient 

for an exploitable model. (cf. Table 1) 

Table 1 – F1-score by model and sampling technique 

Model DT RF XGB 
No sampling 28.0% 31.5% 36.9% 

RUS 24.3% 29.0% 38.1% 

ROS 37.4% 33.5% 37.6% 

ADA 34.4% 29.9% 37.6% 

SMOTE 32.0% 28.5% 37.1% 

SMOTEEN 28.3% 29.5% 37.1% 

DT: DecisionTrees, RF: RandomForests, XGB: XGBoost 

Discussion and conclusion  

Machine learning approaches did not yield a model efficient 

enough for classifying complex cases as F1-scores were unsat-

isfactory. We tested multiple samplers to correct data imbal-

ance with varying results, as one sampler might improve one 

model’s performance and worsen another. Hyperparameters 

tuning and feature selection improved all models but remains 

insufficient.  

We defined complexity as non-conformity with OncoDoc and 

acknowledge the possible limits associated: complex cases 

which eventually were compliant with OncoDoc after a lengthy 

discussion are not identified in our study. Likewise, some treat-

ments might be dismissed without posing difficulty to MTB 

(patient’s preference). Further analyses and reviews of MTB 

decisions might give us a more accurate definition of complex-

ity for further studies. 

We tested several algorithms, used samplers for data imbalance 

and optimized hyperparameters and feature selection but mod-

els were not efficient enough to classify complex patients in the 

Oncodoc dataset. Different models, additional data and/or data 

structuring might improve results. 
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Figure 1– Analytic plan  
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