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Abstract 

Cognitive Workload (CWL) is a fundamental concept in 
predicting healthcare professionals’ (HCPs) objective 
performance. The study aims to compare the accuracy of the 
classical model (utilizes all six dimensions of the National 
Aeronautics and Space Administration Task Load Index 
(NASA-TLX)) and novel models (utilize four or five dimensions 
of NASA-TLX) in predicting HCPs’ objective performance. We 
use a dataset from our previous human factors research studies 
and apply a broad selection of supervised machine learning 
classification techniques to develop data-driven computational 
models and predict objective performance. The study findings 
confirm that classical models are better predictors of objective 
performance than novel models. This has practical implications 
for research in health informatics, human factors and 
ergonomics, and human-computer interaction in healthcare. 
Findings, although promising, cannot be generalized as they 
are based on a small dataset. Future studies may investigate 
additional subjective and physiological measures of CWL to 
predict HCPs’ objective performance. 
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Introduction 

Health care is an intrinsically complex field and the increasing 

complexity and difficulty of tasks impose varying levels of 

cognitive workload (CWL) which affects healthcare 

professionals’ (HCPs) performance. Suboptimal CWL of HCPs 

has consistently been associated with inferior task performance 

and a higher likelihood of errors [12; 18]. Thus, in theory, CWL 

is a fundamental concept in predicting HCPs’ objective 

performance.  
The National Aeronautics and Space Administration Task Load 

Index (NASA-TLX) is the most widely used subjective 

measure of CWL of individuals operating in high-risk and time-

sensitive industries [8]. The NASA-TLX is a six-item scale that 

was initially developed to measure perceived CWL in 

laboratory-based aviation settings and has since been applied to 

CWL measurement in other domains such as nuclear energy, 

transportation, and increasingly in health care [8; 9; 13]. The 

original instrument requires a participant to first perform 15 

separate pair-wise comparisons between 6 dimensions (mental, 

physical and temporal demands, frustration, effort, and 

performance) and then mark a workload score between low (0) 

and high (100) for each dimension. Thus, the classical approach 

involves assessing the composite NASA-TLX score by 

multiplying the dimension weight with the corresponding 

NASA-TLX dimension score, summing across all six 

dimensions, and dividing by the number of comparisons (15). 

However, recent studies in healthcare suggest that using four 

NASA-TLX items (mental, physical, and temporal demands 

and effort) is a more direct measure of overall CWL than using 

six dimensions [7; 19]. Thus, there is wide heterogeneity in 

using NASA-TLX to measure HCPs’ CWL which in turn 

affects the prediction of HCPs’ objective performance.  
CWL is a multidimensional and complex construct that is often 

affected by several non-linear factors. Theory-driven and 

deductive approaches have been utilized in the past to aggregate 

these factors to define overall CWL and build robust models for 

predicting objective performance. In recent times, inductive 

data-driven methodologies such as supervised machine learning 

(ML) classifiers have been applied to predict objective 

performance from perceived CWL data. There is uncertainty 

and ambiguity associated with how the non-linear factors affect 

the overall CWL. This allows the classifiers to learn from data 

and predict HCPs performance, thus generating alternative 

inferences. This ML study aims to optimize the prediction of 

HCPs’ objective performance using an optimal subset of 

NASA-TLX. Previous studies using non-healthcare data 

suggest that data-driven inductive models generally outperform 

deductive theory-driven models [17]. However, to the best of 

our knowledge, no previous study has utilized this methodology 

to predict objective performance of HCPs using perceived 

CWL data.  

Methods 

Dataset 

The dataset for this study has been drawn from our previously 

published studies of HCPs (Table 1). The dataset contains 318 

instances from 84 HCPs performing tasks of varying difficulty, 

context and requiring different human modalities for processing 

information in a simulated environment. The participants after 

each task filled out the NASA-TLX questionnaire and objective 

performance was measured at the end of the task. The objective 

performance was categorized for each study into low (<=Q1), 

moderate (>Q1 & <=Q2), and high (>= Q3) based on quartiles. 

A detailed description of the tasks, self-reporting measures, and 

objective performance measures can be found in [11], [14], and 

[16].  
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Table 1: Dataset for this study 

 
Author Grant 

# 
Type of 
Participants 

Number of  
participants 

Objective 
performance 

Mazur 

[11] 

R18H

S025

597 

Radiation 

therapists 

32 Assessment 

of procedural 

compliance 

and error 

detection 

Mazur 

[14] 

R21H

S024

062 

Resident 

physicians 

and fellows 

38 Percentage of 

appropriately 

managed 

abnormal test 

results 

Mosaly 

[16] 

R03H

S025

258  

Radiation 

therapists 

14 Assessment 

of time-out 

compliance, 

error 

detection, and 

procedural 

compliance 

 

Machine learning CWL models 

We use the Cross Industry Standard Process for Data Mining 

(CRISP-DM) methodology, one of the most widely-used 

analytics models to implement the ML CWL models [3]. This 

process involves six stages: identifying goals, understanding 

data, preparing data, model training, model testing, and 

deploying the model.  

Goals: The study aims to compare classical and novel CWL 

models in predicting HCPs’ objective performance by 

evaluating classifiers on accuracies and Kappa statistics. The 

classical CWL model utilizes all the six dimensions of NASA-

TLX while the novel CWL models utilize four or five 

dimensions of NASA-TLX.  

Data understanding: The data involved in the creation of 

classical and novel CWL models include different 

combinations of NASA-TLX dimensions. Data exploration is 

the first part of CRISP-DM in which an analytic base table is 

built for discovering the nature of data and investigating its 

characteristics (Table 2).  

Table 2- Characteristics of features and the outcome (R 
=Range, C= Categorical) 

Features Type Miss N Mean  SD 
Mental 

Demand 

R 0 314 46.16 24.43 

Physical 

Demand 

R 0 314 16.32 14.83 

Temporal 

Demand 

R 0 314 28.39 21.84 

Effort R 0 314 39.20 24.33 

Performance R 0 314 32.28 25.96 

Frustration R 0 314 29.33 25.80 

 

Outcome Type Miss N Classes 
(number of 
instances) 

Objective 

performance  

    

 C          0 314  Low (165) 

Moderate (74) 

High (75) 
 

Data preparation: The main aim of this stage is to construct the 

final dataset for subsequent modeling. Here the dataset is 

divided into two segments- features and the outcome variable 

(objective performance) for the following CWL models: 

a) Classical model (all 6 dimensions of NASA-TLX as 

features)  

b) Novel model-I (4 dimensions- Mental, Physical, 

Temporal Demands and Effort)  

c) Novel model-II (5 dimensions - Mental, Physical, 

Temporal Demands, Effort, and Frustration) 

d) Novel model-III (5 dimensions- Mental, Physical, 

Temporal Demands, Effort, and Performance) 

Target class imbalance: In ML, the class imbalance impacts the 

creation of robust models as it tends to favor predicting the 

majority class over the minority class. In the current dataset, 

there are two minority classes – medium (74) and high (75) and 

one majority class –low (165). To solve this issue, we use 

synthetic minority oversampling techniques (SMOTE)[4], a 

widely used oversampling method to balance the target classes. 

Studies suggest that there are more than 85 SMOTE 

variants[10], but for this study, we implement three widely used 

SMOTE variants: equal resampling [4], minority resampling 

[4], and density-based (DB) SMOTE [2]. We use DB-SMOTE 

because of its ability to avoid model overfitting [6]. We also 

compare the accuracy of the ML classifiers with and without 

SMOTE variants. Table 3 shows the number of instances in 

each objective performance class as well as the total number of 

instances in the original dataset and the training dataset with 

and without SMOTE variants. 

Table 3- Distribution of objective performance classes in 
original and training datasets (with/without SMOTE variants)  

Dataset 
Objective performance 
classes Total # of 

instances Low Moderate High 
Original dataset 165 74 75 314 

Training dataset 

without SMOTE 
130 60 61 251 

Equal sampling 

SMOTE  
130 130 130 390 

Minority 

Resampling 

SMOTE 

140 100 100 340 

DB-SMOTE  130 130 59 319 

 
Model training: The aim of this stage to develop computational 

models by learning from data. We surveyed the main classifiers 

and selected the following five ML classification techniques to 

tackle the CWL modeling problem from different perspectives: 
� Similarity-based: K-nearest Neighbors (KNN) 
� Information based: Random Forest (RFC)  
� Error-based: Nu Support Vector Machine (Nu-SVM) 
� Probability-based: Bernoulli Naïve Bayes (BNB)  

To develop robust predictive models with a higher degree of 

generalizability, cross-validation can be used for model 

training. A random stratified split was conducted on the original 

dataset (314 instances) with 80% for training and 20% for 

testing. Stratification was used to ensure that the class 

imbalance was retained for training and testing (Fig. 1). The 

training dataset was then oversampled with multiple SMOTE 

variants. Subsequently, we used 10-fold cross-validation (CV), 

a widely used training method for small datasets [1]. In this 

study, after CV, the final models were tested on the held out 

test set (20% of instances). 
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Figure 1. Model training and testing 

Model testing: This stage aims at testing the classifiers from the 

earlier stage, evaluating them on their inferential capacity and 

accuracy. Overall, 64 final classifiers were built (4 CWL 

models x 4 classifiers x 4 with and without SMOTE). We 

selected two metrics- prediction accuracy and the Kappa 

statistic to evaluate the final classifiers. Accuracy helps in the 

overall interpretation of a classifier while the Kappa statistic 

compares observed accuracy with expected accuracy (random 

chance). The Kappa statistic accounts for random chance and is 

likely to be less misleading. Further, previous studies show that 

Kappa statistic is sensitive to imbalanced data and is useful for 

evaluating multi-class models. Thus, combining Kappa statistic 

with accuracy provides a more in-depth interpretation than 

using accuracy alone as an evaluation metric [5]. 

Results 

Cross-validation accuracies 

The distribution of accuracies obtained with 10-fold CV for 

different CWL models (classical model, novel model I-III) is 

shown in Fig 2. The highest CV accuracy for predicting 

objective performance is achieved by the classical model 

followed by the novel models I-III. Further, equal sampling 

SMOTE achieved higher accuracy than using other SMOTE 

variants and “without SMOTE” (Fig 3). RFC and Nu-SVM 

achieved higher accuracy in comparison with other machine 

learning classifiers as well (Fig 4). 

  

Figure 2.CV accuracies for CWL models 

 

   

Figure 3.CV accuracies grouped by with and without SMOTE 
variants 

  

Figure 4. CV accuracies for machine learning classifiers 

Testing accuracies and Kappa statistic 

The overall average accuracy (0.46, SD 0.11) obtained for 64 

classifiers in the model testing phase is lower than that obtained 

in the model training phase (0.49, SD 0.7). However, the results 

from the model testing phase show two identical and one non-

identical trend in comparison with the model training phase. 

Figure 5 depicts the distribution of accuracy of different CWL 

models. As observed in the model testing phase, the classical 

model has the highest accuracy in predicting objective 

performance than the novel models. The density plots of testing 

accuracies also confirm that the classical model with more 

compact and taller curves are on average superior to the novel 

models (Fig 6). Further, the distribution of Kappa statistics 

validates that the classical model is more reliable in predicting 

objective performance than the novel models (Fig 7). The 

testing accuracy distribution shows that “without SMOTE” is 

better than the “SMOTE variants” in building CWL models, 

which is in contrast to the findings in the model testing phase 

(Fig 8). Testing accuracy distribution for ML classifiers also 

shows the same trends as in the model training phase. Fig 9 

highlights that Nu-SVM and RFC are the most robust machine 

learning classifiers to build CWL models for this dataset. 

 

Figure 5. Testing accuracies for CWL models 
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Figure 6. Testing accuracy densities for CWL models 

 

Figure 7. Kappa statistic for CWL models 

     

Figure 8. Testing accuracies for with and without SMOTE 
variants 

  

Figure 9 Testing accuracies for machine learning classifiers 

Discussion 

The findings in this study suggest that the classical model 

outperforms novel models I-III in predicting HCPs’ objective 

performance based on two evaluation metrics: accuracy and the 

kappa statistic. We examined 64 final models, used four 

different supervised ML classifiers, and explored using and not 

using SMOTE variants to compare the classical and novel CWL 

models. The classical model consistently outperformed the 

novel models I-III in CV and testing accuracies and Kappa 

statistics. Thus, this ML study suggests that the set of 6 

dimensions of NASA-TLX (classical model) is a better 

predictor of HCPs’ objective performance in comparison to 

using 4 or 5 dimensions of NASA-TLX (novel models).  
The findings of this study have wide-ranging practical 

implications for research in the field of health informatics, 

human factors and ergonomics, and human-computer 

interaction in healthcare. NASA-TLX dimensions were 

originally designed to be weighted, but more recently, 

researchers have started using the raw scores of dimensions 

which are averaged or added to create an overall CWL estimate 

[8]. Furthermore in healthcare, using other approaches such as 

confirmatory factor analysis, the number of NASA-TLX 

dimensions to calculate overall CWL has been reduced to four 

[15; 19]. This study utilizes a data-driven ML methodology to 

suggest that all six dimensions of NASA-TLX should be used 

to better predict HCPs’ objective performance.  
We also found that the testing accuracies even for the best-

supervised machine learning classifiers (RFC and Nu-SVM) 

vary from 0.40 to 0.59, indicating that either more data is 

needed to build better CWL models, or more independent 

features and other non-linear factors influencing CWL are 

necessary to increase the accuracies. However, these results are 

in line with current research on CWL and the widely accepted 

difficulties in predicting human performance [17].  
We also report that the testing accuracies of the “without 

SMOTE” dataset were higher than “with SMOTE” variants 

although all the SMOTE variants outperformed “without 

SMOTE” on CV accuracies. Previous studies suggest that 

SMOTE greatly improves minority class detection and overall 

classification performance. However, the limited size of the 

dataset and overall low accuracies may have enabled “without 

SMOTE” to classify the majority class correctly while 

misclassifying minority classes and thus having higher 

accuracy. Thus, this justifies the argument that accuracy alone 

is not a reliable predictor for minority classes, and therefore, 

these findings have to be interpreted cautiously.  
Our study results have important implications in quantifying 

overall CWL of HCPs. Despite recent evidence in favor of 

utilizing a four-item NASA-TLX as a quick measure of overall 

CWL of HCPs [15; 19], our study suggests that all dimensions 

must be measured to assess overall CWL of HCPs.  

Comparison with prior work 

Overall, our findings are consistent with the Moustafa et al. 

study that used non-healthcare data (405 total instances) to 

develop data-driven computational models of CWL to predict 

objective performance [17]. Important differences between the 

present study and their study were that they considered two 

subjective measures of CWL (NASA-TLX and Workload 

profile) and within NASA-TLX used raw scores of all 

dimensions of NASA-TLX, weights of all dimensions, and total 

TLX scores as independent features. However, in this study, we 

compared raw scores of six dimensions of NASA-TLX with 

four and five dimensions of NASA-TLX to predict HCPs 

objective performance. Further, we used multiple SMOTE 

oversampling techniques on the data, while Moustafa et al. used 
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only DB-SMOTE for oversampling [17]. To answer the 

research question/goal of the study, we utilized 64 classifiers 

while Moustafa et al. utilized 16 classifiers for comparison.  
This study has several limitations. Our results are based on a 

small dataset of HCPs (62% participants are radiation 

therapists) at a single large academic medical center drawn 

from three Agency for Healthcare Research and Quality grants. 

The objective performance in each of the grants is assessed 

differently and hence findings from this study, although 

promising, cannot be generalized. Further, we use only raw 

scores of NASA-TLX dimensions as independent features, 

which limits the generalizability of the study findings.  

 Conclusions 

This human-centered machine learning study suggests that a set 

of 6 dimensions of NASA-TLX (classical model) is a better 

predictor of objective performance of healthcare professionals 

than using 4 or 5 dimensions of NASA-TLX (novel models). 

This finding has implications for research in health informatics 

and human factors in healthcare. Further empirical evidence for 

this study confirms that testing accuracies for predicting the 

objective performance of HCPs even with the best ML 

classifiers vary from 0.4 to 0.59, thus highlighting the need for 

additional independent features to better predict objective 

performance. Further empirical research is required using 

weighted scores of NASA-TLX, total TLX scores, other self-

reporting CWL assessment techniques (e.g., Workload profile), 

physiological measures, data from other HCPs performing 

primary and secondary tasks in different healthcare contexts 

(e.g., operation theater, simulation in safety-critical 

environments, electronic health records) to confirm if building 

data-driven models of CWL would improve our prediction of 

HCPs’ objective performance. 
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