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Abstract. Real-world performance of machine learning (ML) models is crucial for 

safely and effectively embedding them into clinical decision support (CDS) systems. 
We examined evidence about the performance of contemporary ML-based CDS in 

clinical settings. A systematic search of four bibliographic databases identified 32 

studies over a 5-year period. The CDS task, ML type, ML method and real-world 
performance was extracted and analysed. Most ML-based CDS supported image 

recognition and interpretation (n=12; 38%) and risk assessment (n=9; 28%). The 

majority used supervised learning (n=28; 88%) to train random forests (n=7; 22%) 
and convolutional neural networks (n=7; 22%). Only 12 studies reported real-world 

performance using heterogenous metrics; and performance degraded in clinical 

settings compared to model validation. The reporting of model performance is 
fundamental to ensuring safe and effective use of ML-based CDS in clinical settings. 

There remain opportunities to improve reporting.  
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1. Introduction 

Artificial Intelligence (AI) technologies, specifically machine learning (ML) models, are 

increasingly being embedded into clinical decision support (CDS) systems. While many 

ML-based CDS have been built, only a few are implemented in clinical settings and little 

is known about their performance in routine use [1; 2]. To address this gap, we conducted 

a scoping review of the use of ML-based CDS in clinical settings. The results of this 

scoping review have been reported in a separate publication. Here we specifically focus 

on examining the ML models and performance of the ML-based CDS in clinical settings.  

2. Methods 

We searched four bibliographic databases (PubMed, Medline, Embase, and Scopus) for 

original research articles describing the use of ML-based CDS in clinical settings. The 

search query included a combination of terms about AI/ML, CDS, clinical tasks, and 

clinical settings. We included studies published from January 2016 to April 2021 
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excluding systematic reviews, conference, and non-English papers. After removal of 

duplicates, titles and abstracts were screened by two independent reviewers (APS & FM). 

For each included study, we extracted the CDS task, ML type, ML method, and real-

world performance. CDS tasks were categorized into: (1) computerized provider order 

entry (CPOE) and e-prescribing, (2) diagnostic assistance, (3) therapy planning, (4) risk 

assessment, (5) process support systems, and (6) image recognition and interpretation 

including computer aided diagnosis. To obtain the ML type, method, and performance, 

we hand searched reference lists of retrieved articles. ML type was categorized into 

supervised learning, unsupervised learning, and reinforcement learning. ML 

performance was identified when algorithms were tested/validated on datasets and used 

prospectively in clinical settings to assess real-world performance. We extracted 

performance metrics including area under the error/loss function, receiving operator 

curve (AUC), precision recall curve (APR), accuracy (ACC), recall/sensitivity (SE), 

specificity (SP), precision/positive predictive value (PPV), and negative predictive value 

(NPV). The comparator and ground truth to assess real-world performance was identified.  

3. Results 

Of the 1,255 articles retrieved, 32 studies met the inclusion criteria (Table 1). The 

majority were prospective cohort studies (n=18; 56%) or randomized controlled trials 

(n=9; 28 %). Image recognition and interpretation (n=12; 38%) was the most common 

CDS task followed by risk assessment (n=9; 28%). Majority of studies reported models 

utilizing supervised learning (n=28; 88%) and a study used reinforcement learning (3%) 

[3]. Random forests (n=7; 22%) and convolutional neural networks (n=7; 22%) were the 

most common ML methods. Only 12 studies (37%) reported real-world performance. Of 

these, two compared CDS assisted decisions against a gold standard [4; 5]. The most 

common metrics were SE (n=10; 31%), SP (n=9; 28%), and AUC (n=5; 16%). Fifteen 

studies (47%) reported model performance, majority using AUC (n=9; 28%). Compared 

to model validation, performance of ML-based CDS degraded in the real world [6-11]. 

4. Discussion 

Only one third of studies reported the real-world performance of ML-based CDS. Where 

performance was reported, data quality was poor. Heterogeneity in metrics prevented 

direct comparison, even for the same CDS task. While performance is assessed in 

development to choose the best ML method, real-world performance provides evidence 

about the efficacy and safety of a model for a specific CDS task. However, real-world 

performance is not covered by current reporting guidelines, such as DECIDE-AI [12] 

and CONSORT-AI [13]. As such a variety of metrics will need to be used to thoroughly 

examine the different clinical applications and specific tasks supported by ML-based 

CDS [14; 15]. For example, if the CDS task is to support chronic disease screening in 

healthy people, sensitivity is important. Conversely, a CDS supporting treatment 

planning for high-risk procedures requires high specificity. Furthermore, analysis of false 

positives and false negatives is necessary to support safe implementation and use. We 

also found problems with the reporting of ML type and method [4; 16; 17] which can 

help to increase transparency and enhance trustworthiness of clinical AI, and support 

studies to examine robustness and reproducibility.  
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Table 1. Studies about AI-based CDS in clinical settings by CDS task (n=32) 

Author,  
Year [Reference] 

ML type; 
ML method 

Model validation  Real-world performance 

Image recognition & interpretation (n=12) 
Gong, 2020 [6] SL; Deep 

CNN, RF 
AUC=84% to 95.24% for 

endoscope insertion. 

AUC = 90% for 
endoscope slipping. 

Ground truth: recording video. 

Comparator: CDS output.  

Endoscope insertion; endoscope 
slipping. ACC=97.9%; 94.3%. SE= 

95.8%; 98%. SP = 99.3%;98.8%.   
Kim, 2020 [18] SL; CNN Not reported Ground truth: Lab test for diagnosis. 

Comparator: CDS output. 

AUC=0.755. SE=70.2%. SP=72.7%. 
PPV=73.4%. NPV=61.5%. 

Lin, 2019 [7] SL; CNN  Diagnosis; treatment [19] 

ACC=98.87%; 97.56%  
Ground truth: Expert clinician 

assessment. Comparator: CDS 
output on diagnosis; treatment. 

ACC=87.4%; 70.8%. SE=89.7%; 

86.7%. SP=86.4%; 44.4%. 
PPV=74.4%. NPV=95%. 

Liu, 2020 [20] SL; CNN Not reported Not reported 

Mori, 2020 [8] SL; SVM Expert; trainee. SE=93%; 
95% SP=70%; 95.7% 

PPV=94.9%.; 94.1% 

NPV=63.6%; 96.4% 

Ground truth: Pathology anatomy 
result Comparator: Clinician 

decision with CDS.  
SE, SP, PPV, NPV 

Repici, 2020 [21] SL; CNN SE=99.7%. Not reported 

Savenije, 2020 [22] SL; CNN Not reported Not reported 
Tan, 2021 [23] SL; DL, NL Not reported Not reported 
Wang, 2019 [24] 

Wang, 2020 [25] 

SL; CNN AUC=0.98. SE=94.4%. 

SP=95.9%. 
Not reported 

Xiao, 2021 [26] SL; DL Not reported AUC=0.74. SE=64%. SP=0.73% 
Yao, 2021 [27] SL; CNN AUC=0.93. ACC=85.7%. 

SE= 86.3%. SP=85.7%. 

[28] 

Not reported 

Risk Assessment (n=9) 
Brennan, 2019 [5] SL; 

Generalized 

additive 
model  

Not reported Ground truth: complication 

incidence. Comparator: Clinician 

assisted by CDS AUC=0.59; CDS 
output alone AUC=0.85. 

Burdick, 2020 [29] SL; GB AUC=0.87 to 0.92 [30]  Not reported 
Giannini, 2019 [31] 

Ginestra, 2019 [32] 

SL; RF  AUC=0.88. PPV= 29%. 

SE=26%. SP=98%.  
Not reported 

Isma’eel, 2017 [33] SL; ANN  Not reported Ground truth: stress testing. 
Comparator: CDS output. SE=91%. 

SP=65%. PPV=26%. NPV=98%. 
Jauk, 2020 [10]  
Jauk, 2021 [9] 

SL; ANN AUC=0.91 Ground truth: clinician diagnosis. 
Comparator: CDS output. 

AUC=0.86. SE=74.1%. SP=82.20%. 
Sendak, 2020 [34] SL; DL Gain in AUC 19.4% and 

APR 55.5%. 
Not reported 

Shimabukuro [35] SL; GB Not reported Not reported 

Diagnostic assistance (n=5) 
Blomberg, 2021 [4] Not reported Not reported Ground truth: diagnosis registry. 

Comparator: Clinician assisted by 

CDS. SE=85%. SP=97.4% 
Grigull; 2016 [11] SL; SVM, 

ANN, fuzzy, 

RF 

AUC ranging from 0.918 
to 1 for different 

classifiers. ACC=89.5%. 

Ground truth: Test & diagnosis by 
specialist. Comparator: CDS output. 

PPV=0.83 to 1. NPV= 0.97 to 1 
Marcos-P [36] SL; RF, GB Not reported Not reported 
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Author,  
Year [Reference] 

ML type; 
ML method 

Model validation  Real-world performance 

Rawson, 2018 [37] SL; SVM Not reported Ground truth: blood culture. 
Comparator: CDS output. 

AUC=0.84. SE=89%. SP=63%. 

Wintjens, 2020 [38] SL; 
ANN, RF 

Not reported Ground truth: Molecular laboratory 
result. Comparator: CDS output. 

SE=86%. NPV=92%. 

Therapy planning (n=3) 
Nicolae, 2020 [3] RL Not reported Not reported 

Niel, 2018 [39] SL; Neural 

network 
Loss function: Network 

error 0.00076 
Not reported 

Sibolt, 2021 [40] SL; CNN Not reported Not reported 

Diagnostic assistance (n=2) 
Chen, 2020 [41] SL; GB  AUC=0.92, APR=0.56 Not reported 
Romero-B [17] Not reported Not reported Not reported 
CPOE & e-prescribing (n=1) 
Segal, 2019 [16] Not reported Not reported Not reported 

ACC: accuracy ANN: artificial neural network, APR: area under precision-recall curve, AUC: area under 

receiver operating characteristic, CDS: clinical decision support, CNN: convolutional neural network, CPOE: 
computerized order entry, DL: deep learning, GB: gradient boosting, NL: natural language processing, NPV: 

negative predictive value, PPV: positive predictive value, RF: random forests, RL: reinforcement learning, SE: 

sensitivity, SL: supervised learning. SP: specificity, SVM: support vector machine.  

5. Conclusions 

This review has identified a gap in reporting about the real-world performance of ML-

based CDS in clinical settings. Comprehensive performance reporting would enable 

clinicians to evaluate quality and safety of AI-enabled CDS for routine use. 
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