Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes

  • In this paper, an effective numerical method for the variable-order(VO) fourth-order problem with Caputo-Fabrizio derivative will be constructed and analyzed. Based on generalized alternating numerical flux, appropriate spatial and temporal discretization, we get a fully discrete local discontinuous Galerkin(LDG) scheme. The theoretic properties of the fully discrete LDG scheme are proved in detail by mathematical induction, and the method is proved to be unconditionally stable and convergent with O(τ+hk+1), where h is the spatial step, τ is the temporal step and k is the degree of the piecewise Pk polynomial. In order to show the efficiency of our method, some numerical examples are carried out by Matlab.

    Citation: Liuchao Xiao, Wenbo Li, Leilei Wei, Xindong Zhang. A fully discrete local discontinuous Galerkin method for variable-order fourth-order equation with Caputo-Fabrizio derivative based on generalized numerical fluxes[J]. Networks and Heterogeneous Media, 2023, 18(2): 532-546. doi: 10.3934/nhm.2023022

    Related Papers:

    [1] Zhe Pu, Maohua Ran, Hong Luo . Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2023, 18(1): 291-309. doi: 10.3934/nhm.2023011
    [2] Panpan Xu, Yongbin Ge, Lin Zhang . High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065
    [3] Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou . A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034
    [4] Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433
    [5] Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461
    [6] Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032
    [7] Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang . Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038
    [8] Ling Zhang, Xuewen Tan, Jia Li, Fan Yang . Dynamic analysis and optimal control of leptospirosis based on Caputo fractional derivative. Networks and Heterogeneous Media, 2024, 19(3): 1262-1285. doi: 10.3934/nhm.2024054
    [9] Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681
    [10] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
  • In this paper, an effective numerical method for the variable-order(VO) fourth-order problem with Caputo-Fabrizio derivative will be constructed and analyzed. Based on generalized alternating numerical flux, appropriate spatial and temporal discretization, we get a fully discrete local discontinuous Galerkin(LDG) scheme. The theoretic properties of the fully discrete LDG scheme are proved in detail by mathematical induction, and the method is proved to be unconditionally stable and convergent with O(τ+hk+1), where h is the spatial step, τ is the temporal step and k is the degree of the piecewise Pk polynomial. In order to show the efficiency of our method, some numerical examples are carried out by Matlab.



    In this paper, we will analyze the following variable-order fourth-order equations

    ut+ρ(t)CF01α(t)tu+uxxxx=w(x,t),(x,t)(a,b)×(0,T],u(x,0)=u0(x),x[a,b], (1.1)

    where 0<α(t)<1, ρ(t) is a continuous function. The solution of the problem (1.1) is periodic or compactly supported.

    The variable-order Caputo-Fabrizio derivative is defined as [27]

    CF01α(t)tu(x,t)=(1(α(t))ζ0u(x,ξ)ξexp[α(t)1α(t)(ζξ)]dξ)ζ=t.

    Fractional calculus can better reflect the reality of nature. Many physical problems are regulated by fractional order differential equations (FDEs) and finding analytical solutions to these equations has been the subject of research by many researchers in recent years [5,16]. The main reason for which is that the theory of derivatives of fractions (non-integers) has aroused considerable interest in mathematics, physics, engineering and other scientific fields [14,21,31].

    Designing an effective numerical method is meaningful for fractional order differential equations. Some numerical methods such as finite difference methods [4,24], orthogonal spline collocation method [28], finite element methods [18], finite volume methods [12], spectral methods [7,11], discontinuous Galerkin method [17,20], orthogonal spline collocation methods [28] and so on, have been attempted to approximate the exact solution.

    Fourth-order problems as a significant part of FDEs are studied by some scholars. Combining appropriate spatial and temporal discretization, some methods have been developed to solve fourth-order FDEs, including compact difference methods [8,22,30], orthogonal spline collocation methods [23], the homotopy perturbation methods [3], Galerkin-Legendre spectral methods [2], non-polynomial quintic spline methods [9], finite element methods [13,15], LDG methods [6,17,25]. However, the report about numerical methods for variable-order fourth-order FDEs with Caputo-Fabrizio derivative is limited. We will study a LDG method for the problem (1.1) based on generalized numerical fluxes.

    The rest of this paper is as follows. First in Section 2, some notations and necessary lemmas will be introduced. Then in Section 3, we propose a LDG scheme for solving the above problem (1.1), and discuss the stability and convergence of the method by mathematical induction. In Section 4, we shall give some numerical experiments which is made by using Matlab procedure to show the efficiency of our method. Finally in Section 5, the conclusion is given.

    Let a=x12<x32<<xN+12=b be a partition of the domain ˉΩ=[a,b], Ij=[xj12,xj+12], for j=1,N, and define hj=xj+12xj12,1jN, h=max1jNhj.

    We denote u+j+12=limt0+u(xj+12+t) and uj+12=limt0+u(xj+12t). Futhermore, the weighted average of a function v is defined by (v)(δ)j+12=δvj+12+(1δ)v+j+12, where δ is the given weight.

    The local discontinuous Galerkin space Vkh is shown below

    Vkh={ς:ςPk(Ij),j=1,2,N}.

    For a periodic function ϑ which is defined on the domain [a,b], the generalized Gauss-Radau projections [1,19], denoted by Pδ. Let ϑe=Pδϑϑ be the projection error. For the case δ12, it has the following properties

    Ij(ϑe)η(x)dx=0,ηPk1(Ij),(ϑe)δj+12=0,j=1,2,N. (2.1)

    The following conclusion can be obtained from [1].

    Lemma 2.1. If δ12, ϑHs+1[a,b], then there holds

    ϑe+h12ϑeL2(τh)Chmin(k+1,s+1)ϑs+1, (2.2)

    the constant C which is independent of h, is solely dependent on the function ϑ. τh is the union of element boundary points, and ϑeτh can be defined by

    ϑeτh=(12Nj=1(((ϑe)+j+12)2+((ϑ)ej+12)2))12.

    Throughout this paper, the notation C represents a positive constant that may have a different value at each time. The usual notations in Sobolev space are used in the paper. Let the scalar inner product on L2(E) be denoted by (,)E, and the associated norm by E. If E=Ω, we drop E.

    Firstly, we rewrite Eq (1.1) as a system

    p=ux,q=px,s=qx,ut+ρ(t)CF01α(t)tu+sx=w(x,t). (3.1)

    Let tn=nMT, and τ=tntn1. The temporal derivatives ut and ρ(t)CF01α(t)tu at tn are approximated as follows

    ut(x,tn)=u(x,tn)u(x,tn1)τ+Φn1(x),ρ(tn)CF01α(t)tu(x,tn)=ρ(tn)α(tn)tn0u(x,ς)ςexp[α(tn)1α(tn)(tnς)]dς=ρ(tn)(1α(tn))τnk=1(u(x,tk)u(x,tk1))(exp[(α(tn)1)τα(tn)(nk)]exp[(α(tn)1)τα(tn)(nk+1)])+ρ(tn)α(tn)nk=1tktk1(ςtk12)2u(x,ck)ς2exp[α(tn)1α(tn)(tnς)]dς=ρ(tn)(1α(tn))τnk=1(u(x,tk)u(x,tk1))bnk+Φn2(x)=ρ(tn)(1α(tn))τ(bnnu(x,tn)+n1k=1(bnkbnk+1)u(x,tk)bn1u(x,t0))+Φn2(x), (3.2)

    where ck(tk1,tk),

    bnk=exp[(α(tn)1)τα(tn)(nk)]exp[(α(tn)1)τα(tn)(nk+1)]

    and Φn(x)=Φn1(x)+Φn2(x) is the truncation error. According to [27], we can know the following conclusion

    Φn(x)Cτ, (3.3)

    here the constant C>0, depending on T and the function u.

    Furthermore, by some calculations, we could find that bnk in Eq (3.2) has the following property

    0<bn1<bn2<bn3<<bnn=bn1n1. (3.4)

    Then we could define the fully-discrete LDG method for the problem (1.1). Let unh,pnh,qnh,snhVkh be the approximations of u(,tn),p(,tn),q(,tn),s(,tn), respectively, wn(x)=w(x,tn). Find unh,pnh,qnh,snhVkh, such that for v,w,ρ,φVkh,

    (1τ+ρ(tn)bnn(1α(tn))τ)Ωunhvdx(ΩsnhvxdxNj=1((^snhv)j+12(^snhv+)j12))=ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)Ωukhvdx+bn1Ωu0hvdx)+1τΩun1hvdx+Ωwnvdx,Ωsnhwdx+ΩqnhwxdxNj=1((^qnhw)j+12(^qnhw+)j12)=0,Ωqnhρdx+ΩpnhρxdxNj=1((^pnhρ)j+12(^pnhρ+)j12)=0,Ωpnhφdx+ΩunhφxdxNj=1((^unhφ)j+12(^unhφ+)j12)=0. (3.5)

    The hat terms in Eq (3.5) which are from integration by parts are numerical fluxes. In order to guarantee stability, we will choose the following generalized numerical fluxes [26]

    ^unh=(unh)(δ),^pnh=(pnh)(1δ),^qnh=(qnh)(δ),^snh=(snh)(1δ), (3.6)

    where δ12. If δ=0 or 1, the flux Eq (3.6) will be purely alternating numerical fluxes [29].

    In order to simplify the notations in the stability and convergence, we could denote

    ΘΩ(unh,pnh;w,v)=ΩunhwxdxNj=1(((unh)(δ)w)j+12((unh)(δ)w+)j12)+ΩpnhvxdxNj=1(((pnh)(1δ)v)j+12((pnh)(1δ)v+)j12). (3.7)

    Without loss of generality, the case w=0 is considered in the numerical analysis of the scheme (3.5).

    Theorem 3.1. Assume that the solution of the problem (1.1) is compactly supported or periodic, then the LDG method (3.5) is stable and satisfies the following inequalities

    unhu0h,n=1,2,M. (3.8)

    Proof. In scheme (3.5), we first take the test functions v=unh,w=pnh,ρ=qnh,φ=snh, we could have

    (1τ+ρ(tn)bnn(1α(tn))τ)unh2+qnh2+ΘΩ(qnh,pnh;pnh,qnh)ΘΩ(unh,snh;snh,unh)=ρ(tn)(1α(tn))τ((n1i=1(bnk+1bnk)Ωukhunhdx+bn1Ωu0hunhdx)+1τΩun1hunhdx. (3.9)

    In each cell Ij, we can obtain

    ΘIj(qnh,pnh;pnh,qnh)=Ijqnh(pnh)xdx(((qnh)(δ)(pnh))j+12((qnh)(δ)(pnh)+)j12)+Ijpnh(qnh)xdx(((pnh)(1δ)(qnh))j+12((pnh)(1δ)(qnh)+)j12)=((qnh)(pnh))j+12((qnh)+(pnh)+)j12((qnh)(δ)(pnh))j+12+((qnh)(δ)(pnh)+)j12((pnh)(1δ)(qnh))j+12+((pnh)(1δ)(qnh)+)j12. (3.10)

    Summing (3.10) from 1 to N over j, we can get

    ΘΩ(qnh,pnh;pnh,qnh)=0,ΘΩ(unh,snh;snh,unh)=0. (3.11)

    Combining Eqs (3.4), (3.11) and Cauchy-Schwarz inequality, the equality (3.9) will become

    (1τ+ρ(tn)bnn(1α(tn))τ)unhρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)ukh+bn1u0h)+1τun1h. (3.12)

    In what follows we will prove Theorem 3.1 by using mathematical induction. For the case n=1 in Eq (3.12), we can easily get

    (1τ+ρ(t1)b11(1α(t1))τ)u1hρ(t1)(1α(t1))τb11u0h+1τu0h, (3.13)

    that is

    u1hu0h. (3.14)

    Next assume that the following inequality holds

    ukhu0h,k=1,2,3,n1, (3.15)

    we need to prove

    unhu0h.

    According to Eq (3.12), we could have the following inequality

    (1τ+ρ(tn)bnn(1α(tn))τ)unhρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)ukh+bn1u0h)+1τun1hρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)+bn1)u0h+1τu0h=ρ(tn)(1α(tn))τbnnu0h+1τu0h. (3.16)

    Obviously, we can directly obtain

    unhu0h.

    This finishes the proof of Theorem 3.1.

    Theorem 3.2. Suppose that u(x,tn) is the exact solution of the problem (1.1), unh is the numerical solution of the fully discrete LDG scheme (3.5), then the following result holds

    u(x,tn)unhC(τ+hk+1),

    where C>0 is a constant depending on u,T.

    Proof.

    enu=u(x,tn)unh=ξnuηnu,ξnu=Pδenu,ηnu=Pδu(x,tn)u(x,tn),enp=p(x,tn)pnh=ξnpηnp,ξnp=P1δenp,ηnp=P1δp(x,tn)p(x,tn),enq=q(x,tn)qnh=ξnqηnq,ξnq=Pδenq,ηnq=Pδq(x,tn)q(x,tn),ens=s(x,tn)snh=ξnsηns,ξns=P1δens,ηns=P1δs(x,tn)s(x,tn). (3.17)

    Here ηnu, ηnp, ηnq and ηns have been estimated by the inequality (2.2). Next we will estimate ξnu, ξnp, ξnq and ξns. Based on the fluxes (3.6), we have

    (1τ+ρ(tn)bnn(1α(tn))τ)ΩenuvdxΩensvxdx+Nj=1(((ens)(1δ)v)j+12((ens)(1δ)v+)j12)+ΩΦn(x)vdx1τΩen1uvdxρ(tn)(1α(tn))τ((n1k=1(bnk+1bnk)Ωekuvdx+bn1Ωe0uvdx)+Ωenswdx+ΩenqwxdxNj=1(((enq)(δ)w)j+12((enq)(δ)w+)j12)+Ωenqρdx+ΩenpρxdxNj=1(((enp)(1δ)ρ)j+12((enp)(1δ)ρ+)j12)+Ωenpφdx+ΩenuφxdxNj=1(((enu)(δ)φ)j+12((enu)(δ)φ+)j12)=0. (3.18)

    Based on Eq (3.17), and taking v=ξnu,w=ξnp,ρ=ξnq,φ=ξns, the above error Eq (3.18) could be written as

    (1τ+ρ(tn)bnn(1α(tn))τ)ξnu2+ξnq2+ΘΩ(ξnq,ξnp;ξnp,ξnq)ΘΩ(ξnu,ξns;ξns,ξnu)=ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)Ωξkuξnudx+bn1Ωξ0uξnudx)ΩΦn(x)ξnudx+(1τ+ρ(tn)bnn(1α(tn))τ)Ωηnuξnudx+ΘΩ(ηnq,ηnp;ξnp,ξnq)ΘΩ(ηnu,ηns;ξns,ξnu)+1τΩξn1uξnudx1τΩηn1uξnudx+Ωηnqξnqdx+ΩηnsξnpdxΩηnpξnsdxρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)Ωηkuξnudx+bn1Ωη0uξnudx). (3.19)

    Then, taking v=ξnq, w=ξns, ρ=βξnu, φ=βξnp in Eq (3.18), we can get the following equation from the error Eq (3.18)

    (1τ+ρ(tn)bnn(1α(tn))τ)ξnp2+ξns2+βΘΩ(ξnu,ξnp;ξnp,ξnu)+ΘΩ(ξnq,ξns;ξns,ξnq)=ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)Ωξkuξnqdx+bn1Ωξ0uξnqdx)+ΩΦn(x)ξnqdxβΩηnuξnqdx+βΘΩ(ηnu,ηnp;ξnp,ξnu)+ΘΩ(ηnq,ηns;ξns,ξnq)1τΩξn1uξnqdx+1τΩηn1uξnqdx+βΩηnqξnudx+Ωηnsξnsdx+βΩηnpξnpdx+ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)Ωηkuξnqdx+bn1Ωη0uξnqdx). (3.20)

    By applying Eqs (3.19), (3.20), stability results and ξ0u=0, we have the following equality

    βξnu2+ξnq2+βξnp2+ξns2=ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)Ωξku(ξnuξnq)dx+bn1Ωξ0u(ξnuξnq)dx)+1τΩξn1u(ξnuξnq)dxΩΦn(x)(ξnuξnq)dx+4i=1Ti (3.21)

    where β=(1τ+ρ(tn)bnn(1α(tn))τ),

    T1=Ωηnqξnqdx+ΩηnsξnpdxΩηnpξnsdx+βΩηnqξnudx+Ωηnsξnsdx+βΩηnpξnpdx,T2=ρ(tn)(1α(tn))τ(bnnΩηnu(ξnuξnq)dxn1k=1(bnk+1bnk)Ωηkuξnqdx+bn1Ωη0u(ξnuξnq)dx)1τΩξn1u(ξnuξnq)dx,T3=Ω(ηnuηn1u)τ(ξnuξnq)dxT4=ΘΩ(ηnq,ηnp;ξnp,ξnq)ΘΩ(ηnu,ηns;ξns,ξnu)+βΘΩ(ηnu,ηnp;ξnp,ξnu)+ΘΩ(ηnq,ηns;ξns,ξnq).

    Next we begin to discuss the terms Ti,i=1,2,3,4.

    Bsaed on the approximation property, Cauchy-Schwarz inequality, we have

    T1Chk+1(ξnu+ξnq+ξns+ξnp).

    and

    T2Chk+1ξnuξnq.

    With the help of

    ηiuηi1uτ1τtiti1t(Qδu(x,t)u(x,t))dtChk+1utL(H2(Ω)),
    T3Chk+1utL(H2(Ω))ξnuξnq,

    According to the properties (2.1), we can obtain

    T4=0.

    Noticing the fact that

     ab14εa2+εb2,

    and

    (ab)22(a2+b2).

    Based on the above results, and Cauchy-Schwarz inequalities in Eq (3.21), we could have

    βξnu2+ξnq214ε1(ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)ξku+bn1ξ0u)+1τξn1u+Φn(x)dx)2+ε1ξnuξnq2+ε2ξnu2+ε3ξnq2+Ch2k+2 (3.22)

    that is

    βξnu2+ξnq214ε1(ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)ξku+bn1ξ0u)+1τξn1u+Φn(x)dx)2+(2ε1+ε2)ξnu2+(2ε1+ε3)ξnq2+Ch2k+2, (3.23)

    so we can obtain the following inequality

    (β2ε1ε2)ξnu214ε1(ρ(tn)(1α(tn))τ(n1k=1(bnk+1bnk)ξku+bn1ξ0u)+1τξn1u+Φn(x)dx)2+Ch2k+2 (3.24)

    that is

    ξnu12(β2ε1ε2)ε1τ(ρ(tn)(1α(tn))n1k=1(bnk+1bnk)ξku+ξn1u)+C(hk+1+τ). (3.25)

    Finally, by applying discrete Gronwall inequality and the triangle inequality, the proof Theorem 3.2 is completed.

    Consider the problem (1.1)

    ut+ρ(t)CF01α(t)tu+uxxxx=w(x,t),(x,t)(0,2π)×(0,1],u(x,0)=sin(x),x(0,2π).

    Let ρ(t)=12, and the right term w(x,t) is taken such that the exact solution for the problem (1.1) is u(x,t)=etsin(x).

    In the following numerical experiments, the following basis functions for xIj are choosed

    ϕj1=1,ϕj2=x(xj12+xj+122)hj,ϕj3=(x(xj12+xj+122)hj)2. (4.1)

    The convergence results are showed for both L norm and L2 norm of the error. By varying the value of the parameter δ, the different α(t), and the polynomial approximations from P0 to P2. For uniform meshes, numerical errors and convergence rates with different δandα(t) are shown in Tables 13 for k=0,1 and 2, respectively. The convergent results in Tables 1 and 2 illustrate that the spatial convergence rate can attain O(hk+1) for piecewise Pk polynomials. Table 3 shows the temporal convergence rate is closed to O(Δt) by using our scheme, this is consistent with the theoretical results.

    Table 1.  Errors versus N, for different δ with M=5000,T=1.
    α(t) δ Pk N L-error order L2-error order
    5 1.740531150383093 - 1.856872679569707 -
    10 0.864569387772493 1.0095 0.895561146790427 1.0520
    P0 15 0.572851975309558 1.0151 0.589558568838264 1.0311
    20 0.428542766345249 1.0089 0.439974710819443 1.0173
    5 0.684519250525526 - 0.494306358929751 -
    δ=0.1 10 0.192652231688883 1.8291 0.131115425232428 1.9146
    P1 15 0.086980076197341 1.9612 0.059094992390308 1.9655
    20 0.049356492303964 1.9696 0.033413520766790 1.9820
    5 0.084986517667719 - 0.044925635579710 -
    10 0.010076694499805 3.0762 0.005290980027691 3.0859
    P2 15 0.002978268712921 3.0061 0.001558719171324 3.0142
    20 0.001265853161807 2.9741 6.727656547770956E-04 2.9207
    5 1.885198974510259 - 2.070042187044406 -
    10 0.890498263410747 1.0820 0.943149454109176 1.1341
    P0 15 0.580949986392324 1.0534 0.605185028386995 1.0943
    20 0.432018364333049 1.0296 0.446811629365803 1.0546
    5 0.630265500474040 - 0.517981933170420 -
    α(t)=3+5t10 δ=0.3 10 0.235126887392044 1.4225 0.185662688702393 1.4802
    P1 15 0.120574166167753 1.6471 0.093525685668037 1.6911
    20 0.072032377351253 1.7907 0.055457129576016 1.8167
    5 0.076329772694388 - 0.040857513944066 -
    10 0.008202425617554 3.2181 0.004355936326285 3.2295
    P2 15 0.002330058182918 3.1039 0.001269089557106 3.0415
    20 9.896100371102395E-04 2.9767 5.526844252958554E-04 2.8895
    5 1.826393769789430 - 1.974561867576591 -
    10 0.879694345160746 1.0539 0.920703715362021 1.1007
    P0 15 0.577573781928998 1.0377 0.597751317918225 1.0654
    20 0.430569533399183 1.0210 0.443549658602455 1.0371
    5 0.651288720319747 - 0.512561963971504 -
    δ=0.8 10 0.214043573323575 1.6054 0.153386050326162 1.7406
    P1 15 0.100449966106176 1.8658 0.071549136282852 1.8807
    20 0.057413974281730 1.9444 0.040999588158489 1.9355
    5 0.080177976833727 - 0.042899183979938 -
    10 0.009242097354639 3.1169 0.004782445115423 3.1651
    P2 15 0.002714243368699 3.0219 0.001399042040896 3.0315
    20 0.001132120309036 3.0395 6.060712650631764E-04 2.9079

     | Show Table
    DownLoad: CSV
    Table 2.  Errors versus N, for different δ with M=5000,T=1.
    α(t) δ Pk N L-error order L2-error order
    5 1.810302729631866 - 1.950431137529400 -
    10 0.877399118498201 1.0449 0.916404251319563 1.0897
    P0 15 0.576885850871822 1.0342 0.596395642065351 1.0594
    20 0.430278309350828 1.0192 0.442964518772469 1.0338
    5 0.651519200140843 - 0.512199596387930 -
    δ=0.2 10 0.213787037852454 1.6076 0.153374062256062 1.7397
    P1 15 0.099726789743246 1.8807 0.071548068227604 1.8806
    20 0.057317676171240 1.9251 0.040999460569314 1.9355
    5 0.079817658439521 - 0.042896459836405 -
    10 0.009197629002603 3.1174 0.004782155144824 3.1651
    P2 15 0.002658885254297 3.0608 0.001398217766249 3.0328
    20 0.001126035045434 2.9866 6.041931292179050E-04 2.9166
    5 1.865747594446795 - 2.037246844551530 -
    10 0.887707777972510 1.0716 0.937011068141408 1.1205
    P0 15 0.580116988315355 1.0492 0.603231846217448 1.0861
    20 0.431666440723307 1.0274 0.445965926728114 1.0500
    5 0.633708004317878 - 0.516741062515626 -
    α(t)=2+sin(t)7 δ=0.7 10 0.235919326182138 1.4255 0.185598771207892 1.4773
    P1 15 0.121501316888998 1.6366 0.093518217061097 1.6905
    20 0.072176715017533 1.8104 0.055455799964511 1.8165
    5 0.076672827151093 - 0.040853928772116 -
    10 0.008243823024788 3.2173 0.004355603274341 3.2295
    P2 15 0.002379576236816 3.0645 0.001268176450632 3.0431
    20 9.947572460603090E-04 3.0317 5.506224366806317E-04 2.9000
    5 1.729087893311004 - 1.843367998709562 -
    10 0.862950112030744 1.0027 0.893326833848479 1.0451
    P0 15 0.572364336168310 1.0126 0.588862758645951 1.0279
    20 0.428335813433843 1.0076 0.439675530183568 1.0156
    5 0.686293159773277 - 0.494248023341584 -
    δ=0.9 10 0.193058217003713 1.8298 0.131114165235490 1.9144
    P1 15 0.087682768453988 1.9466 0.059094911534041 1.9655
    20 0.049450035210393 1.9910 0.033413504585291 1.9820
    5 0.085360832701889 - 0.044923377907586 -
    10 0.010123790019360 3.0758 0.005290732336462 3.0859
    P2 15 0.003036086784551 2.9702 0.001557984170353 3.0152
    20 0.001270534625058 3.0281 6.710762184142701E-04 2.9278

     | Show Table
    DownLoad: CSV
    Table 3.  Errors versus M, order for different α(t) with N=1000,δ=0.1andT=1.
    δ α(t) Pk M L-error order L2-error order
    5 0.090087363149624 - 0.159181356644604 -
    10 0.046080582339233 0.9672 0.080719555365971 0.9797
    P0 20 0.024318500122052 0.9221 0.041278317744786 0.9675
    40 0.014263331789890 0.7697 0.022039911004129 0.9053
    5 0.089685315404578 - 0.158930336103160 -
    2+sin(t)7 10 0.045285538906416 0.9858 0.080234299480900 0.9861
    P1 20 0.022772885774461 0.9917 0.040331924115622 0.9923
    40 0.011427368276094 0.9948 0.020222651900295 0.9960
    5 0.089666839925252 - 0.158930335672200 -
    10 0.045267355562751 0.9861 0.080234298636511 0.9861
    P2 20 0.022754850556509 0.9923 0.040331922445057 0.9923
    40 0.011409407707825 0.9960 0.020222648577901 0.9960
    5 0.092278282392325 - 0.163075784277075 -
    10 0.047588731867645 0.9554 0.083422842300834 0.9670
    P0 20 0.025137243620514 0.9208 0.042790838444117 0.9631
    40 0.014637973590646 0.7801 0.022797986729060 0.9084
    5 0.091877239195643 - 0.162817382350204 -
    δ=0.1 3+et8 10 0.046811118261484 0.9729 0.082940253881480 0.9731
    P1 20 0.023637091702674 0.9858 0.041865614610574 0.9863
    40 0.011883655939878 0.9921 0.021033322221825 0.9931
    5 0.091859870837349 - 0.162817381813411 -
    10 0.046794026688965 0.9731 0.082940252808304 0.9731
    P2 20 0.023620142459790 0.9863 0.041865612465820 0.9863
    40 0.011866778883860 0.9931 0.021033317934436 0.9931
    5 0.092426147173819 - 0.163338581702283 -
    10 0.047626659435398 0.9565 0.083490784014887 0.9682
    P0 20 0.025142841044313 0.9216 0.042801172563352 0.9640
    40 0.014635468540203 0.7807 0.022792929313315 0.9091
    5 0.092033960297031 - 0.163093173386189 -
    3+5t10 10 0.046857711782370 0.9739 0.083020884986288 0.9742
    P1 20 0.023651002086529 0.9864 0.041888334452081 0.9869
    40 0.011888473556514 0.9923 0.021039934224149 0.9934
    5 0.092015469364094 - 0.163093172965469 -
    10 0.046839518094077 0.9742 0.083020884169484 0.9742
    P2 20 0.023632961090627 0.9869 0.041888332842850 0.9869
    40 0.011870509954076 0.9934 0.021039931030017 0.9934

     | Show Table
    DownLoad: CSV

    In this article, an accurate numerical method is presented to solve a class of variable-order (VO) fourth-order problem with Caputo-Fabrizio derivative. Based on finite difference method in time and LDG method in space, we obtain a fully discrete scheme. By taking the generalized alternating numerical fluxes, the unconditional stability and convergence are proved in detail. Some numerical experiments are shown which illustrates the effectiveness of our scheme.

    This work is supported by National Natural Science Foundation of China (11861068), the Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01E13), the Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province (2019GGJS094), Scientific and Technological Research Projects in Henan Province (212102210612), the Innovative Funds Plan of Henan University of Technology (2021ZKCJ11).

    The authors declare that they have no conflicts of interest.



    [1] Y. Cheng, X. Meng, Q. Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations, Math. Comp., 86 (2017), 1233–1267. https://doi.org/10.1090/mcom/3141 doi: 10.1090/mcom/3141
    [2] M. Fei, C. Huang, Galerkin-Legendre spectral method for the distributed-order time fractional fourth-order partial differential equation, Int. J. Comput. Math., 97 (2020), 1183–1196. https://doi.org/10.1080/00207160.2019.1608968 doi: 10.1080/00207160.2019.1608968
    [3] A. Golbabai, K. Sayevand, Fractional calculus-A new approach to the analysis of generalized fourth-order diffusion-wave equations, Comput. Math. Appl., 61 (2011), 2227–2231. https://doi.org/10.1016/j.camwa.2010.09.022 doi: 10.1016/j.camwa.2010.09.022
    [4] X. M. Gu, H. W. Sun, Y. L. Zhao, X. C. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. https://doi.org/10.1016/j.aml.2021.107270 doi: 10.1016/j.aml.2021.107270
    [5] X. Gu, S. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [6] L. Guo, Z. Wang, S. Vong, Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93 (2016), 1665–1682. https://doi.org/10.1080/00207160.2015.1070840 doi: 10.1080/00207160.2015.1070840
    [7] S. Guo, L. Mei, Z. Zhang, Y. Jiang, Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation, Appl. Math. Lett., 85 (2018), 157–163. https://doi.org/10.1016/j.aml.2018.06.005 doi: 10.1016/j.aml.2018.06.005
    [8] C. Ji, Z. Sun, Z. Hao, Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 66 (2016), 1148–1174. https://doi.org/10.1007/s10915-015-0059-7 doi: 10.1007/s10915-015-0059-7
    [9] N. Khalid, M. Abbas, M. K. Iqbal, Non-polynomial quintic spline for solving fourth-order fractional boundary value problems involving product terms, Appl. Math. Comput., 349 (2019), 393–407. https://doi.org/10.1016/j.amc.2018.12.066 doi: 10.1016/j.amc.2018.12.066
    [10] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [11] X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM. J. Numer. Anal., 47 (2009), 2108–2131. https://doi.org/10.1137/080718942 doi: 10.1137/080718942
    [12] F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871–3878. https://doi.org/10.1016/j.apm.2013.10.007 doi: 10.1016/j.apm.2013.10.007
    [13] Y. Liu, Z. Fang, H. Li, S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243 (2014), 703–717. https://doi.org/10.1016/j.amc.2014.06.023 doi: 10.1016/j.amc.2014.06.023
    [14] C. P. Li, F. H. Zeng, Numerical methods for fractional calculus, CRC Press, 2015.
    [15] Y. Liu, Y. Du, H. Li, S. He, W. Gao, Finite difference/finite element method for a nonlinear timefractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70 (2015), 573–591. https://doi.org/10.1016/j.camwa.2015.05.015 doi: 10.1016/j.camwa.2015.05.015
    [16] F. Liu, P. Zhuang, Q. Liu, Numerical methods of fractional partial differential equations and applications, Science Press, 2015.
    [17] Y. Liu, Y. Du, H. Li, Z, Fang, S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation, J. Comput. Phys., 344 (2017), 108–126. https://doi.org/10.1016/j.jcp.2017.04.078 doi: 10.1016/j.jcp.2017.04.078
    [18] M. Li, X. Gu, C. Huang, M. Fei, G. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Compu. Phys., 358 (2018), 256–282. https://doi.org/10.1016/j.jcp.2017.12.044 doi: 10.1016/j.jcp.2017.12.044
    [19] X. Meng, C. W. Shu, B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225–1261. https://doi.org/10.1090/mcom/3022 doi: 10.1090/mcom/3022
    [20] Y. Niu, J. Wang, Y. Liu, H. Li, Z. Fang, Local discontinuous Galerkin method based on a family of second-order time approximation schemes for fractional mobile/immobile convection-diffusion equations, Appl. Numer. Math., 179 (2022), 149–169. https://doi.org/10.1016/j.apnum.2022.04.020 doi: 10.1016/j.apnum.2022.04.020
    [21] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [22] M. Ran, C. Zhang, New compact difference scheme for solving the fourth order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58–70. https://doi.org/10.1016/j.apnum.2018.03.005 doi: 10.1016/j.apnum.2018.03.005
    [23] S. S. Siddiqi, S. Arshed, Numerical solution of time-fractional fourth-order partial differential equations, Int. J. Comput. Math., 92 (2014), 1496–1518. https://doi.org/10.1080/00207160.2014.948430 doi: 10.1080/00207160.2014.948430
    [24] D. Wang, A. Xiao, W. Yang. A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys., 272 (2014), 644–655. https://doi.org/10.1016/j.jcp.2014.04.047 doi: 10.1016/j.jcp.2014.04.047
    [25] L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38 (2014), 1511–1522. https://doi.org/10.1016/j.apm.2013.07.040 doi: 10.1016/j.apm.2013.07.040
    [26] L. Wei, Y. He, A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation, Discrete Contin. Dyn. Syst. - Ser. B, 26 (2021), 4907–4926. https://doi.org/10.3934/dcdsb.2020319 doi: 10.3934/dcdsb.2020319
    [27] L. Wei, W. Li, Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo-Fabrizio fractional derivative, Math. Comput. Simulat., 188 (2021), 280–290. https://doi.org/10.1016/j.matcom.2021.04.001 doi: 10.1016/j.matcom.2021.04.001
    [28] X. Yang, H. Zhang, D. Xu, WSGD-OSC Scheme for two-dimensional distributed order fractional reaction-diffusion equation, J. Sci. Comput., 76 (2018), 1502–1520. https://doi.org/10.1007/s10915-018-0672-3 doi: 10.1007/s10915-018-0672-3
    [29] Q. Zhang, Third order explicit Runge-Kutta discontinuous Galerkin method for linear conservation law with inflow boundary condition, J. Sci. Comput., 46 (2011), 294–313. https://doi.org/10.1007/s10915-010-9403-0 doi: 10.1007/s10915-010-9403-0
    [30] P. Zhang, H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer Algor, 76 (2017), 573–598. https://doi.org/10.1007/s11075-017-0271-7 doi: 10.1007/s11075-017-0271-7
    [31] X. Zheng, H. Wang, H. Fu, Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative, Chaos, Solitons Fractals, 138 (2020), 109966. https://doi.org/10.1016/j.chaos.2020.109966 doi: 10.1016/j.chaos.2020.109966
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1339) PDF downloads(64) Cited by(0)

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog