Research article

Isoperimetric planar clusters with infinitely many regions

  • Received: 12 November 2021 Revised: 10 May 2022 Accepted: 08 July 2022 Published: 21 April 2023
  • In this paper we study infinite isoperimetric clusters. An infinite cluster $ {\bf{E}} $ in $ \mathbb R^d $ is a sequence of disjoint measurable sets $ E_k\subset \mathbb R^d $, called regions of the cluster, $ k = 1, 2, 3, \dots $ A natural question is the existence of a cluster $ {\bf{E}} $ with given volumes $ a_k\ge 0 $ of the regions $ E_k $, having finite perimeter $ P({\bf{E}}) $, which is minimal among all the clusters with regions having the same volumes. We prove that such a cluster exists in the planar case $ d = 2 $, for any choice of the areas $ a_k $ with $ \sum \sqrt a_k < \infty $. We also show the existence of a bounded minimizer with the property $ P({\bf{E}}) = \mathcal H^1({\tilde\partial} {\bf{E}}) $, where $ {\tilde\partial} {\bf{E}} $ denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite isoperimetric clusters for anisotropic and fractional perimeters.

    Citation: Matteo Novaga, Emanuele Paolini, Eugene Stepanov, Vincenzo Maria Tortorelli. Isoperimetric planar clusters with infinitely many regions[J]. Networks and Heterogeneous Media, 2023, 18(3): 1226-1235. doi: 10.3934/nhm.2023053

    Related Papers:

  • In this paper we study infinite isoperimetric clusters. An infinite cluster $ {\bf{E}} $ in $ \mathbb R^d $ is a sequence of disjoint measurable sets $ E_k\subset \mathbb R^d $, called regions of the cluster, $ k = 1, 2, 3, \dots $ A natural question is the existence of a cluster $ {\bf{E}} $ with given volumes $ a_k\ge 0 $ of the regions $ E_k $, having finite perimeter $ P({\bf{E}}) $, which is minimal among all the clusters with regions having the same volumes. We prove that such a cluster exists in the planar case $ d = 2 $, for any choice of the areas $ a_k $ with $ \sum \sqrt a_k < \infty $. We also show the existence of a bounded minimizer with the property $ P({\bf{E}}) = \mathcal H^1({\tilde\partial} {\bf{E}}) $, where $ {\tilde\partial} {\bf{E}} $ denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite isoperimetric clusters for anisotropic and fractional perimeters.



    加载中


    [1] L. Ambrosio, A. Braides, Functionals defined on partitions in sets of finite perimeter. Ⅱ. Semicontinuity, relaxation and homogenization, J. Math. Pures Appl., 69 (1990), 307–333.
    [2] L. Ambrosio, V. Caselles, S. Masnou, Jean-Michel Morel, Connected components of sets of finite perimeter and applications to image processing, J. Eur. Math. Soc. (JEMS), 3 (2001), 39–92. https://doi.org/10.1007/PL00011302 doi: 10.1007/PL00011302
    [3] L. Ambrosio, P. Tilli, Topics on analysis in metric spaces, In: Oxford Lecture Series in Mathematics and its Applications, Oxford: Oxford University Press, 2004.
    [4] D. W. Boyd, The sequence of radii of the Apollonian packing, Math. Comp., 39 (1982), 249–254. https://doi.org/10.1090/S0025-5718-1982-0658230-7 doi: 10.1090/S0025-5718-1982-0658230-7
    [5] L. Caffarelli, J. M. Roquejoffre, O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111–1144.
    [6] D. G. Caraballo, Existence of surface energy minimizing partitions of $\mathbb{R}^n$ satisfying volume constraints, Trans. Amer. Math. Soc., 369 (2017), 1517–1546. https://doi.org/10.1090/tran/6630 doi: 10.1090/tran/6630
    [7] A. Cesaroni, M. Novaga, Nonlocal minimal clusters in the plane, Nonlinear Anal., 199 (2020), 111945. https://doi.org/10.1016/j.na.2020.111945 doi: 10.1016/j.na.2020.111945
    [8] M. Colombo, F. Maggi, Existence and almost everywhere regularity of isoperimetric clusters for fractional perimeters, Nonlinear Anal., 153 (2017), 243–274. https://doi.org/10.1016/j.na.2016.09.019 doi: 10.1016/j.na.2016.09.019
    [9] G. De Philippis, A. De Rosa, F. Ghiraldin, Existence results for minimizers of parametric elliptic functionals, J. Geom. Anal., 30 (2020), 1450–1465. https://doi.org/10.1007/s12220-019-00165-8 doi: 10.1007/s12220-019-00165-8
    [10] K. J. Falconer, The Geometry of Fractal Sets, Cambridge: Cambridge University Press, 1986.
    [11] J. Foisy, M. Alfaro, J. Brock, N. Hodges, J. Zimba, The standard double soap bubble in R2 uniquely minimizes perimeter, Pacific J. Math., 159 (1993), 47–59. https://doi.org/10.2140/pjm.1993.159.47 doi: 10.2140/pjm.1993.159.47
    [12] R. L. Frank, R. Seiringer, Sharp fractional Hardy inequalities in half-spaces, Around the research of Vladimir Maz'ya. I, 11 (2010), 161–167. https://doi.org/10.1090/surv/162/06 doi: 10.1090/surv/162/06
    [13] T. C. Hales, The honeycomb conjecture, Discrete Comput. Geom., 25 (2001), 1–22. https://doi.org/10.1007/s004540010071 doi: 10.1007/s004540010071
    [14] K. E. Hirst, The Apollonian packing of circles, J. London Math. Soc., 42 (1967), 281–291. https://doi.org/10.1112/jlms/s1-42.1.281 doi: 10.1112/jlms/s1-42.1.281
    [15] M. Hutchings, F. Morgan, M. Ritoré, A. Ros, Proof of the double bubble conjecture, Ann. of Math., 155 (2002), 459–489.
    [16] E. Kasner, F. Supnick, The apollonian packing of circles, Proc. Natl. Acad. Sci. U.S.A., 29 (1943), 378–384. https://doi.org/10.1073/pnas.29.11.378 doi: 10.1073/pnas.29.11.378
    [17] G. Lawlor, F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pacific J. Math., 166 (1994), 55–83. https://doi.org/10.2140/pjm.1994.166.55 doi: 10.2140/pjm.1994.166.55
    [18] G. P. Leonardi, Partitions with prescribed mean curvatures, Manuscripta Math., 107 (2002), 111–133. https://doi.org/10.1007/s002290100230 doi: 10.1007/s002290100230
    [19] F. Maggi, Sets of finite perimeter and geometric variational problems: an introduction to Geometric Measure Theory, Cambridge: Cambridge University Press, 2012.
    [20] E. Milman, J. Neeman, The structure of isoperimetric bubbles on $\mathbb{R}^n$ and $\mathbb{S}^n$, arXiv: 2205.09102, [Preprint], (2022), [cited 2023 Mar 31]. Available from: https://doi.org/10.48550/arXiv.2205.09102.
    [21] F. Morgan, Geometric measure theory. A Beginner's guide, Cambridge: Academic Press, 1987.
    [22] F. Morgan, C. French, S. Greenleaf, Wulff clusters in $\mathbb R^2$, J. Geom. Anal., 8 (1998), 97–115. https://doi.org/10.1016/B978-0-12-506855-0.50005-2 doi: 10.1016/B978-0-12-506855-0.50005-2
    [23] M. Novaga, E. Paolini, Regularity results for boundaries in ${\mathbb R}^2$ with prescribed anisotropic curvature, Ann. Mat. Pura Appl., 184 (2005), 239–261. https://doi.org/10.1007/s10231-004-0112-x doi: 10.1007/s10231-004-0112-x
    [24] M. Novaga, E. Paolini, E. Stepanov, V. M. Tortorelli, Isoperimetric clusters in homogeneous spaces via concentration compactness, J. Geometric Anal., 32 (2022), 263. https://doi.org/10.1007/s12220-022-00939-7 doi: 10.1007/s12220-022-00939-7
    [25] E. Paolini, E, Stepanov, Existence and regularity results for the steiner problem, Calc. Var. Partial. Differ. Equ., 46 (2013), 837–860.
    [26] E. Paolini, V. M. Tortorelli, The quadruple planar bubble enclosing equal areas is symmetric, Calc. Var. Partial Differ. Equ., 59 (2020), 1–9.
    [27] W. Wichiramala, Proof of the planar triple bubble conjecture, J. Reine Angew. Math., 567 (2004), 1–49. https://doi.org/10.1515/crll.2004.011 doi: 10.1515/crll.2004.011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(739) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog