[1]
Esqué, A., Franz, F., Mulder, G., Riedel, R., Riefer, D.,, Decarbonizing aviation: Executing on net-zero goals. 2023.
Google Scholar
[2]
IATA, Global Outlook for Air Transport: Highly Resilient, Less Robust. 2023.
Google Scholar
[3]
IEA, Energy Technology Perspectives. 2020.
Google Scholar
[4]
IEA, The Role of E-fuels in Decarbonising Transport. 2024.
Google Scholar
[5]
Fagerström, A., et al., Economic and Environmental Potential of Large-Scale Renewable Synthetic Jet Fuel Production through Integration into a Biomass CHP Plant in Sweden. Energies, 2022. 15(3).
DOI: 10.3390/en15031114
Google Scholar
[6]
da Silva Pinto, R.L., et al., An overview on the production of synthetic fuels from biogas. Bioresource Technology Reports, 2022. 18.
Google Scholar
[7]
Ballal, V., et al., Climate change impacts of e-fuels for aviation in Europe under present-day conditions and future policy scenarios. Fuel, 2023. 338.
DOI: 10.1016/j.fuel.2022.127316
Google Scholar
[8]
German Environmental Agency, Power-to-Liquids Potentials and Perspectives for the Future Supply of Renewable Aviation Fuel. 2016.
Google Scholar
[9]
Alherbawi, M., et al., A novel integrated pathway for Jet Biofuel production from whole energy crops: A Jatropha curcas case study. Energy Conversion and Management, 2021. 229.
DOI: 10.1016/j.enconman.2020.113662
Google Scholar
[10]
Gonzalez-Garay, A., et al., Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector. Energy & Environmental Science, 2022. 15(8): pp.3291-3309.
DOI: 10.1039/d1ee03437e
Google Scholar
[11]
Jones, M.P., T. Krexner, and A. Bismarck, Repurposing Fischer-Tropsch and natural gas as bridging technologies for the energy revolution. Energy Conversion and Management, 2022. 267.
DOI: 10.1016/j.enconman.2022.115882
Google Scholar
[12]
Leite, V.R., É. Fontana, and V.C. Mariani, Optimization of operating conditions of the Fischer–Tropsch synthesis based on multi-objective differential evolution algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022. 44(10).
DOI: 10.1007/s40430-022-03785-4
Google Scholar
[13]
Arabpour, M., et al., Evaluation of maximum gasoline production of Fischer–Tropsch synthesis reactions in GTL technology: A discretized approach. Journal of Natural Gas Science and Engineering, 2012. 9: pp.209-219.
DOI: 10.1016/j.jngse.2012.08.001
Google Scholar
[14]
Bayat, M. and M.R. Rahimpour, Boosting the gasoline production via a novel multifunctional Fischer–Tropsch reactor: Simulation and optimization. Journal of Natural Gas Science and Engineering, 2013. 11: pp.52-64.
DOI: 10.1016/j.jngse.2012.12.003
Google Scholar
[15]
Pandey, U., et al., Modeling Fischer–Tropsch kinetics and product distribution over a cobalt catalyst. AIChE Journal, 2021. 67(7).
Google Scholar
[16]
Shafer, W., et al., Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels. Catalysts, 2019. 9(3).
Google Scholar
[17]
Pandey, U., et al., Modeling Fischer–Tropsch kinetics and product distribution over a cobalt catalyst. AIChE Journal, 2021. 67(7): p. e17234.
Google Scholar
[18]
Virtanen, P., Gommers, R., Ollphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, CJ., Polat, I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0—Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 2020. 17: p.261
DOI: 10.1038/s41592-020-0772-5
Google Scholar
[19]
IEAGHG, Techno-economic evaluation of retrofitting CCS in a market pulp mill and an integrated pulp and board mill. 2016.
Google Scholar
[20]
Kearns, D., Liu, H., Consoli, C.,, Technology Readiness and Costs of CCS. 2021, Global CCS Institute.
Google Scholar
[21]
Rangel, G.P., Domingos, M. G., Lopes, J. C. B., Neto, B.,, Sustainable Continuous Green Hydrogen Production: Optimisation of Combined Economic and Environmental factors - Manuscript in preparation. 2024.
Google Scholar
[22]
Ember Climate, European wholesale electricity price data. 2024.
Google Scholar
[23]
Statista, Futures price of cobalt worldwide from August 2019 to August 2023. 2024.
Google Scholar
[24]
Ember Climate, The price of emissions allowances in the EU and UK - Cost per tonne of carbon dioxide produced (in £ or €). 2023.
Google Scholar
[25]
myLPG.EU, Chart of fuel prices in Portugal - Average prices (Last prices from 23.05.2024). 2024.
Google Scholar
[26]
Statista, Monthly price of naphtha worldwide from January 2020 to December 2022. 2024.
Google Scholar