Scalable Flexible Electromagnetic Interference Shielding Textiles Based on MWCNTs and PEDOT:PSS

Article Preview

Abstract:

With the rise of electromagnetic radiation-based technologies, considerable attention has been drawn to developing and implementing innovative electromagnetic shielding materials. Carbon nanomaterials and conductive polymers have been appealing to both academia and industry as promising alternatives for the traditionally used metallic materials, owing to their lightness, flexibility, easy processability and resistance to corrosion, which are of special importance for textile applications. In this work, multiwalled carbon nanotubes (MWCNTs) and poly (3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) have been applied to cotton textile substrates by straightforward scalable dyeing and coating processes, respectively. These processes led to uniform and homogeneous coatings with distinct properties: the fabric coated with MWCNT presented higher thickness and lower loading of incorporated material than the textile coated with PEDOT:PSS (thickness: 995 μm vs. 208 μm; material loading: 9.4 wt.% vs. 70.7 wt.%). The electromagnetic shielding properties were outlined for each shielding textile in the frequency range of 5.85–18 GHz: an average shielding effectiveness of ~35.6 dB was obtained for MWCNT@tex, while PEDOT:PSS@tex reached ~38.3 dB. Thus, PEDOT:PSS provided enhanced radiation shielding with lower coating thickness, while the MWCNTs led to improved attenuation with less material usage. Shielding effectiveness values above 30 dB were obtained for both electromagnetic interference shielding textiles, which corresponds to an excellent classification for general use applications, such as casual clothing and maternity wear.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 333)

Pages:

161-169

Citation:

Online since:

June 2022

Export:

Price:

* - Corresponding Author

[1] C. Liu, L. Wang, S. Liu, L. Tong, X. Liu, Fabrication strategies of polymer-based electromagnetic interference shielding materials, Adv. Ind. Eng. Polym. Res. 3 (2020) 149–159. https://doi.org/10.1016/j.aiepr.2020.10.002.

DOI: 10.1016/j.aiepr.2020.10.002

Google Scholar

[2] F. Batool, S., Bibi, A., Frezza, F., Mangini, Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review, Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 3121–3128. https://doi.org/10.26355/eurrev_201904_17596.

Google Scholar

[3] M. Jaroszewski, S. Thomas, A. V. Rane, Advanced Materials for Electromagnetic Shielding, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2018. https://doi.org/10.1002/9781119128625.

DOI: 10.1002/9781119128625

Google Scholar

[4] D. Jiang, V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, R. Wei, A. Subramania, Z. Guo, Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review, Polym. Rev. 59 (2019) 280–337. https://doi.org/10.1080/15583724.2018.1546737.

DOI: 10.1080/15583724.2018.1546737

Google Scholar

[5] B.P. Singh, V. Choudhary, P. Saini, R.B. Mathur, Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding, AIP Adv. 2 (2012) 022151. https://doi.org/10.1063/1.4730043.

DOI: 10.1063/1.4730043

Google Scholar

[6] M. Sang, S. Wang, S. Liu, M. Liu, L. Bai, W. Jiang, S. Xuan, X. Gong, A Hydrophobic, Self-Powered, Electromagnetic Shielding PVDF-Based Wearable Device for Human Body Monitoring and Protection, ACS Appl. Mater. Interfaces. 11 (2019) 47340–47349. https://doi.org/10.1021/acsami.9b16120.

DOI: 10.1021/acsami.9b16120

Google Scholar

[7] L. Zou, C. Lan, X. Li, S. Zhang, Y. Qiu, Y. Ma, Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding, Fibers Polym. 16 (2015) 2158–2164. https://doi.org/10.1007/s12221-015-5436-1.

DOI: 10.1007/s12221-015-5436-1

Google Scholar

[8] S. Ghosh, S. Ganguly, S. Remanan, N.C. Das, Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding, Compos. Sci. Technol. 181 (2019) 107682. https://doi.org/10.1016/j.compscitech.2019.107682.

DOI: 10.1016/j.compscitech.2019.107682

Google Scholar

[9] L. Li, B. Sun, W. Li, L. Jiang, Y. Zhou, J. Ma, S. Chen, X. Ning, F. Zhou, Flexible and Highly Conductive AgNWs/PEDOT:PSS Functionalized Aramid Nonwoven Fabric for High‐Performance Electromagnetic Interference Shielding and Joule Heating, Macromol. Mater. Eng. (2021) 2100365. https://doi.org/10.1002/mame.202100365.

DOI: 10.1002/mame.202100365

Google Scholar

[10] H. Lai, W. Li, L. Xu, X. Wang, H. Jiao, Z. Fan, Z. Lei, Y. Yuan, Scalable fabrication of highly crosslinked conductive nanofibrous films and their applications in energy storage and electromagnetic interference shielding, Chem. Eng. J. 400 (2020) 125322. https://doi.org/10.1016/j.cej.2020.125322.

DOI: 10.1016/j.cej.2020.125322

Google Scholar

[11] J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding, Nanoscale Adv. 3 (2021) 123–172. https://doi.org/10.1039/D0NA00760A.

DOI: 10.1039/d0na00760a

Google Scholar

[12] M. Qiu, Y. Zhang, B. Wen, Facile synthesis of polyaniline nanostructures with effective electromagnetic interference shielding performance, J. Mater. Sci. Mater. Electron. 29 (2018) 10437–10444. https://doi.org/10.1007/s10854-018-9100-6.

DOI: 10.1007/s10854-018-9100-6

Google Scholar

[13] H.K. Kim, M.S. Kim, S.Y. Chun, Y.H. Park, B.S. Jeon, J.Y. Lee, Y.K. Hong, J. Joo, S.H. Kim, Characteristics of electrically conducting polymer-coated textiles, Mol. Cryst. Liq. Cryst. 405 (2003) 161–169. https://doi.org/10.1080/15421400390263550.

DOI: 10.1080/15421400390263550

Google Scholar

[14] W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, M.-S. Cao, Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding, Carbon N. Y. 93 (2015) 151–160. https://doi.org/10.1016/j.carbon.2015.05.033.

DOI: 10.1016/j.carbon.2015.05.033

Google Scholar

[15] M. Dai, Y. Zhai, Y. Zhang, A green approach to preparing hydrophobic, electrically conductive textiles based on waterborne polyurethane for electromagnetic interference shielding with low reflectivity, Chem. Eng. J. 421 (2021) 127749. https://doi.org/10.1016/j.cej.2020.127749.

DOI: 10.1016/j.cej.2020.127749

Google Scholar

[16] C. Xu, J. Zhao, Z. Chao, J. Wang, W. Wang, X. Zhang, Q. Li, Developing thermal regulating and electromagnetic shielding textiles using ultra-thin carbon nanotube films, Compos. Commun. 21 (2020) 100409. https://doi.org/10.1016/j.coco.2020.100409.

DOI: 10.1016/j.coco.2020.100409

Google Scholar

[17] A. Sousa, R. Matos, J. Barbosa, J. Ferreira, G. Santos, A. Silva, J. Morgado, P. Soares, S.A. Bunyaev, G.N. Kakazei, J.A. Moreira, O.S. Soares, M.F. Pereira, C. Freire, C. Pereira, A.M. Pereira, Production of electromagnetic shielding textiles based on industrial-grade multi-walled carbon nanotubes and graphene nanoplatelets by dip-pad-dry process, Under Revision (2021).

DOI: 10.1002/pssa.202100516

Google Scholar

[18] M. González, J. Pozuelo, J. Baselga, Electromagnetic Shielding Materials in GHz Range, Chem. Rec. 18 (2018) 1000–1009. https://doi.org/10.1002/tcr.201700066.

DOI: 10.1002/tcr.201700066

Google Scholar

[19] S. Palanisamy, V. Tunakova, J. Militky, Fiber-based structures for electromagnetic shielding – comparison of different materials and textile structures, Text. Res. J. 88 (2018) 1992–2012. https://doi.org/10.1177/0040517517715085.

DOI: 10.1177/0040517517715085

Google Scholar