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ABSTRACT
In this paper we present DeSiNe, a modular flow-level network
simulator. DeSiNe is aimed at performance analysis and bench-
marking of Quality of Service routing algorithms and traffic engi-
neering extensions. Several well-known QoS routing algorithms
and traffic engineering extensions have been implemented in De-
SiNe. The flow-level nature provides scalability, such that large
networks and heavy-traffic conditions are possible. In this paper,
the functional and structural design of DeSiNe are presented and
the usability and various features are illustrated by means of sev-
eral examples. The source code of DeSiNe is publicly available.

Categories and Subject Descriptors
I.6 [Simulation and modeling]: General

Keywords
Simulation, Computer networks, Quality-of-Service

1. INTRODUCTION
The growth in both complexity and size of data communication

networks makes the tasks of testing and measuring very complex.
Testing networks through realistic test-beds requires many nodes,
which is rather costly and involves many practical limitations with
respect to e.g. network size, and configuration. Measuring is dif-
ficult, since typically one cannot arbitrarily sample the topology or
the traffic in large networks like the Internet [1]. Moreover, the “re-
peatability”, or trustworthiness, of scenarios in real network is diffi-
cult to guarantee. The most accessible method is to study networks
and to test new protocols and algorithms via simulation. Based on
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the abstraction level at which the traffic is modeled, simulators can
be roughly categorized as packet-level and flow-level simulators. A
third category, hybrid simulators, combine packets and flows.

Packet-level simulation has gained most attention in the past. In
packet-level discrete event simulators, the arrival and departure of
each packet triggers an event in the simulator. These simulators
use a level of detail that closely reflects reality. However, this high
level of detail comes at the expense of high computation time and
memory usage. Packet-level simulators are mainly applicable to
small networks and are often used for studies where a high level
of detail is required, e.g. monitoring signalling messages of a new
protocol, or the effect of a new buffer management scheme in a
router.

Alternatively to packet-level simulation, we can raise the level
of abstraction to the flow-level. We regard a flow as a connection
established between a source and a destination node in a network.
All the packets of that flow follow the same path from the source
to the destination during the life-time of that flow. Consequently,
in flow-level simulations, the packet-level details are not consid-
ered, which makes flow-level simulations more suitable for scenar-
ios with larger networks and a large number of flows. Moreover,
in the context of Quality of Service (QoS) routing [2, 3], resources
should be reserved, i.e. flows set-up, in order to guarantee QoS.
Understanding the behavior of flows in a network is invaluable in
designing QoS-aware networks.

In this paper we present DeSiNe. DeSiNe stands for Delft Sim-
ulator of Networks and is a scalable flow-level QoS simulator. De-
SiNe incorporates QoS routing and traffic engineering algorithms.
The purpose of DeSiNe is to study and compare the performance
of various QoS routing and traffic engineering implementations at
the network level. In particular, DeSiNe supports constraint-based
routing and dynamic QoS routing, as well as several on-line traffic
engineering algorithms. The good scalability permits the simula-
tion of large networks and heavy-traffic scenarios.

The remainder of this paper is organized as follows. In Section 2
we position DeSiNe in the related work. Its design and features are
presented in Section 3. To illustrate the usability of DeSiNe, simu-
lation examples are given in Section 4. We conclude in Section 5.

2. RELATED WORK
The simulation of network protocols is usually performed at the

level of packets with tools such as the popular open-source ns-2



[4] and SSFNet [5] simulators. These simulators aim at an accu-
rate computation with high level of detail and high fidelity. They
model network protocols at the level of packets. The major ad-
vantage of this approach is that the protocol model does not differ
largely from the real protocol implementation. At the same time,
this accuracy comes at a cost. The main limitation of packet-level
simulators is their lack of abstraction as considerable amounts of
computer resources are needed to maintain the complete state of
network protocols, especially for large network simulations.

There are two main causes to the lack of scalability of packet-
level simulators. Firstly, packet-level simulators rely on discrete-
event simulation (DES). The principle of DES consists in keeping
all the network protocol events ordered according to their time of
occurrence, using a priority queue. Typical events in this context
are the transmission of a data unit by a protocol or the expiration
of a protocol timer. Additionally, intermediate events might also
be created in order to model the CPU workload or queueing delays
at various levels of the protocol stack. Traditional DES implemen-
tations relied for their operation on priority queues which have a
time complexity ofO(log(n)) to insert new events. The advent of
calendar queues in modern schedulers has reduced this complexity
to O(1) on average.

Secondly, packet-level simulators lack a level of abstraction in
the protocol stack. Each protocol model is extremely accurate, of-
ten including the complete protocol finite state machine. This re-
quires significant time and space to hold on the computer. More-
over, heavy traffic conditions increase the computational cost of
packet-level simulations.

Indeed, each packet-flow is composed of several thousands of
packets that must go through the network stack of several nodes,
generating a lot of events and increasing the running time of the
simulation. One can say that for a single flow, the running time
increases linearly with the number of packets in the flow.

To circumvent these fundamental problems of packet-level sim-
ulation, various approaches have been proposed. Several methods
rely on exact solvable models instead of simulation. For exam-
ple, Anick et al. [6] proposed an exact solvable queuing model
that describes the queuing behavior at the queue level in their sem-
inal paper. Although their system allows for high accuracy, their
hypothesis of independent, continuous on-off sources is too restric-
tive. The majority of proposed solutions however seek to enhance
the scalability and performance of network simulators by lowering
the granularity of the simulation or raising the level of abstraction,
specifically the level of traffic abstraction.

One approach is to consider the traffic at the level of flows. For
example, Flowsim [7] uses DES, but coarsens the granularity of
the network traffic by aggregating individual packets into packet-
trains. Hence, the number of events is reduced at the expense of the
accuracy of the simulation.

A second approach, known as the fluid-flow model [8, 9], con-
sists in keeping track of the sending rate of sources. This is in
contrast with DES which keeps track of any single packet trans-
mission. The fluid-flow model is particularly suitable for study-
ing the impact of congestion on the traffic sending rate, as is the
case with TCP. Under light or moderate traffic conditions, the num-
ber of events raised in flow-level simulators is typically much less
compared to packet-level simulators. However, it has been shown
that under heavy traffic conditions and when several flows share the
same available resources, one change in the sending rate of a single
flow may influence the sending rate of many other flows. This can
cause an avalanche of sending rate updates with a dramatic impact
on the running time of the simulation. This effect is known as the
“ripple effect” [8, 10], and may lead to drastic performance degra-

dation, such that packet-level simulation will outperform flow-level
simulation.

Another scalability improvement can be obtained by switching
from a packet-level event-driven simulation to a packet-level time-
stepped simulation. In a time-driven fluid simulation, the continu-
ous traffic flow is discretized into time intervals. The time-driven
nature relieves the problem of the ripple effect, since the network
is only sampled at fixed intervals. This is the approach exposed in
[11, 12]. By using coarser time scales it is possible to further speed
up packet-level time-stepped simulators. Hybrid packet/fluid-flow
simulators use packets for foreground traffic, but model the back-
ground traffic at fluid-level. Examples of hybrid simulators have
been proposed by Nicolet al. [13] and Yunget al. [14]. The
Hybrid Discrete-Continuous Flow Network Simulator (HDCF-NS)
[15] is another example, but little information is given about the
actual model and how flows and packets interact. The IP-TN sim-
ulator [16] defines hybrid nodes that are capable of mixing both
traffic models. The hybrid nodes estimate the aggregate input rate
of the packets and the capacity is shared with the flows proportional
to the combined input rates.

Most simulation studies on QoS routing have created a simu-
lation environment dedicated to the evaluation of their proposed
QoS algorithm or policy. When we consider the field of QoS rout-
ing algorithms, often only the algorithm is implemented and run
on several static networks, without considering traffic and flow dy-
namics. Several QoS simulators have been published and we will
briefly mention them, here. Zhanget al. [17] have developed the
packet-level QoS Routing Simulator (QRS), which was later ex-
tended to EQRS [18] to capture DiffServ MPLS networks. A.
Shaikh [19] has developed a flow-level event-driven QoS simulator
calledroutesim, which focusses on the evaluation of link-state up-
date policies. Sivasankaret al. [20] developed a flow-level simula-
tor, called MuSDyR. DeSiNe differs from the previous simulators,
because it contains all, instead of only some, of the following fea-
tures: (a) Dedicated to evaluate all aspects of QoS routing, includ-
ing traffic engineering. (b) Flow-level abstraction, for scalability,
but also as a natural consequence of QoS routing. (c) Many built-in
QoS mechanisms. (d) Modular design, such that it can easily be
extended with new QoS mechanisms.

3. SIMULATOR DESIGN
DeSiNe is developed to study QoS and traffic engineering in

large networks. DeSiNe models the traffic streams as flows and
assumes fixed flow rates and independence between flows, i.e. the
arrival or departure of a flow has no effect on the already exist-
ing flows. The motivation for taking fixed flow rates is two-fold.
Firstly, one of the purposes of DeSiNe is to investigate QoS tech-
nology, which implies resource reservations. When the required
resources are reserved for a particular flow, they remain unchanged
during its lifetime. Secondly, fixed flow rates prevent from running
into the scalability problems encountered from variable flow rates
arising from feedback-based protocols like TCP. Additionally, the
homogeneity and high level of abstraction make DeSiNe easy to
use and configure, and suitable for simulation of large networks
with many flows. The processing and memory requirements of De-
SiNe scale linearly with the number of flows. Figures 1(a) and 1(b)
show the CPU time required for simulations with a given number
of nodes and flows, respectively. Several types of topologies have
been used (Barabási-Albert, Erdös–Renyí random graphs, and lat-
tices), with varying numbers of nodes, up to 1000. We also vary
the number of flows, up to 100,000. We observe that the simulation
time scales linearly with the number of flows.

The scaling of the simulation time as a function of nodes is not
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Figure 1: Scalability of DeSiNe.

linear because of different link densities of the topologies, as well
as different computation times for the Dijkstra algorithm on dif-
ferent types of topologies. Note that unit weights are used on the
links.

Moreover, DeSiNe is useful when examining “classes” of net-
works with specific properties, e.g. Erdös–Renyí random graphs,
lattices and scale-free graphs. Such studies require automated gen-
eration of many randomized graph realizations. Implementation
and incorporation of additional routing protocols, topology gener-
ators and link-state update policies is easy and straightforward.

A crucial factor in QoS and traffic engineering is the knowledge
about the actual state of the network. Routing algorithms with traf-
fic engineering extensions rely on trustworthy information on the
actual available network resources in the path computation process,
which is of vital importance to guarantee the QoS requirements of
each flow. The acquisition and distribution of network information
is a task of thelink-state update policy(LSUP). As real-time link-
state monitoring and link-state advertisements are costly in terms of
network resources, a trade-off must be made between the accuracy
and overhead associated with the link-state updates. Based on the
network information, therouting algorithmcomputes the path. The
routing algorithm computes the best path according to an optimal-
ity criterion. In QoS-aware networks, the path must obey a set of
QoS requirements and can thereby include or exclude a certain ob-
jective function. In traffic engineering, the paths assigned to flows
try to optimize a local or global objective, i.e. prevent congestion

on links or minimize the blocking of future flows. We refer to [2,
3] for a detailed discussion on QoS routing and to [21, 22, 23] for
on-line traffic engineering algorithms. Sections 3.1 and 3.2 present
the network model and functional design of the simulator, respec-
tively. Section 3.3 presents an overview of the structural design of
DeSiNe and Section 3.4 gives an overview of the features that have
been implemented in DeSiNe.

3.1 Network Model
A network is modeled as a graphG(N ,L), whereN denotes the

set of nodes andL denotes the set of links connecting the nodes.
The number of nodes isN = |N | and likewise the number of links
equalsL = |L|. A subset of the nodes can serve as source or desti-
nation nodes, while other nodes only act as internal nodes or inter-
mediate hops. Each link is assigned a positive value: themaximum
capacity, which expresses the maximum amount of traffic the link
can carry. The actual utilization of the link is maintained by two
values. The first value always contains the trueavailable capac-
ity of the link. The second value is thereservable capacitythat is
advertised by the routers and used in the routing process. The link-
state update policy synchronizes these values. In case the available
and reservable capacity are not synchronized, the link-state infor-
mation is inaccurate orstale.

Each link is also associated with a number of QoS weights re-
lated to additive QoS measures (e.g., delay and jitter). Additive
measures are such that their value along a path is the sum of the
values associated with each constituting link [2, Chap. 12]. Multi-
plicative QoS measures such as the probability of packet loss can be
dealt with by taking the logarithm. The QoS link weights are used
by QoS routing algorithms to compute feasible paths, as described
in Section 3.4. We allow for static and dynamic link weights. In
case of dynamic link weights, the weight can be a function of the
throughput of the link. All links are either directed, allowing traffic
in a single direction, or undirected, in which case the traffic flows
in both directions.

The traffic in the network is modeled by a setF of flows, where
F = ‖F‖ denotes the number of flows. A flowf ∈ F represents a
packet-stream flowing from a sourcens ∈ N to a destinationnd ∈
N . To each flow, a set of QoS requirements can be assigned that
must be met and guaranteed by the network during the life-time of
the flow. The QoS requirements may consist of a single metric, e.g.
capacity, or a set of metrics, e.g. delay, jitter, packet loss, etc. When
the flow is set up, the required capacity along the path is reserved
exclusively to the flow. The resources remain reserved during the
full life-time of the flow to guarantee the QoS requirements.

3.2 Event triggering
DeSiNe is triggered by the arrival of a flow. When a flowfj ar-

rives at the network at timetj , all events in the network that have
occurred after the arrival of flowfj−1 and prior totj are evaluated
and processed at the epoch of the new arrival. Figure 2 schemati-
cally illustrates the arrival of flowfj at timetj . The last arrival was
at tj−1. All events betweentj−1 andtj , such as flow departures
and link-state updates, must be processed before flowfj is routed
and allocated in the network. Figure 2, provides an example where
the link state is displayed schematically from timetj−1 to tj . Be-
tweentj−1 andtj one flow departs at timesj−x and the value of
the reservable capacity, i.e. the capacity that is advertised by the
routers, is updated atTn.

Figure 3 depicts the flowchart diagram of DeSiNe. The simu-
lation begins with the initialization of the network. The network
topology can be generated, e.g. random graph, or read from a file.
After the network is created, the simulation enters a loop that is re-



peated for each flow arrival, until the last flow has been generated.
The loop begins in step1 with the generation of a flow. The dis-
tribution of each property, such as the flow duration or inter-arrival
time, is configured at the start of the simulation. The source and
destination nodes are chosen uniformly from the set of valid end-
points. In step2 the network is scanned for expired flows and time-
based (see Section 3.4) link-state updates. If a time-based link-state
update policy is used, then the reservable capacity is updated with
the available capacity value, as illustrated in Figure 2. Next, the
flow is routed in step3. If no link-state update policy is used,
and all link-state values are updated instantaneously, the reserv-
able capacity equals the actual capacity. The links with insufficient
capacity are pruned from the topology. The routing algorithms de-
scribed hereafter may assign a cost to each link and select the short-
est length path, the length of a path being the sum of the costs of
the constituting links. Link costs may be specified as a function of
the capacity and of the QoS weights. Several different functions are
pre-defined in DeSiNe. If the routing is successful and a feasible
path is found, the resources are reserved along the path (step4).
In case the routing fails, or when the routing is successful, but the
reservation fails, the flow is rejected by the network and discarded.
The reservation may fail due to stale link-state information, such
that the advertised link capacity is more than the actual available
capacity. If the reservation is successful, the flow is allocated in the
network in step5. The advertised link weights are consequently
updated in step6. Finally, in step7, the loop returns to step2 to
the next flow arrival. If no new arrivals are queued, the simulations
ends.

3.3 Structural design
To enhance the extensibility of DeSiNe, a modular approach has

been used. The modules are grouped based on their function and
new modules can be added and removed independently of each
other. The modules can be classified according to Figure 4, where
we have omitted a few utility modules. The moduleMain controls
the flows and performs the data collection, which is written to disk
with use of theIO (Input/Output) module. Based on the parame-
ters, theNetworkis initialized, holding the actual topology with the
traffic information. If the topology is stored on disk, theIO module
is used to read the corresponding file. Likewise, a routing algo-

fy

fj-x

tj-1 t jsj-x TnTn-1

time

capacity

fj-1

available
reservable

Cmax

Figure 2: Example of the link state, showing the evolution of
the available and reservable capacity subject to flow-arrivals
and departures. Each colored block corresponds to one flow.
First, the advertised link-state value is updated atTn−1. Sub-
sequently, flowfj−1 arrives at tj−1. Next, flow fj−x expires at
time sj−x. Then, the next periodical update takes place atTn.
Finally, flow fj arrives at tj . Before flowfj is processed, the de-
parture at sj−x and the link-state update atTn are processed.

1. generate flow
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0. Initialise network

6. update network

Figure 3: Functional view of the DeSine.

rithm is selected from theAlgorithmsmodule. During the simula-
tion, theNetworkmodule uses theLinkStateUpdateandLinkCost-
Functionto perform link-state advertisements and compute actual
link cost, respectively. The moduleRandomimplements random-
number generator including several well-known distributions.

3.4 Functional design
In this section we will briefly discuss the QoS routing algorithms

implemented in DeSiNe, as well as the link-state update policies.
We differentiate here between routing algorithms that only consider
“static” topology information during path computation and routing
algorithms that compute the path based on the actual traffic condi-
tions.

QoS routing algorithms solve the Multi-constrained Path Prob-
lem (MCP) [3]. The MCP problem consists of finding a path that
satisfiesm constraints. When the path meets all the constraints, it is
said to be feasible. The problem of finding the shortest length path,
given a definition of path length, among the feasible ones is known
as the Multi-constrained Optimal Path Problem (MCOP). Traffic
Engineering algorithms can be considered a sub-class of QoS rout-
ing algorithms, without multiple constraints.

The multi-constrained routing algorithms that have been imple-
mented in DeSiNe are: SAMCRA, the self-adaptive multiple con-
straints routing algorithm [3] and TE-DB [22]. SAMCRA is pro-
posed by Van Mieghemet al. [3] and exactly solves the MCOP
problem. Banjereeet al. [22] proposed the TE-DB algorithm which
uses TAMCRA [24], a predecessor of SAMCRA, and the max-flow
concept used in MIRA.

The routing algorithms that incorporate TE extensions utilize
the link-state information provided by the link-state update pol-
icy to find the optimal path. The link-state information consists
of a set of metrics that describe the (transient) state of the link.
Various TE algorithms have been implemented in DeSiNe: sev-
eral variations of MIRA [23], New MIRA [21], and SMIRA, the
simple minimum interference routing algorithm [25]. MIRA takes
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Figure 4: The modular design of DeSine. For each module, its core functionality and features are summarized.

into account the information of ingress-egress pairs(Si, Di) and
weights them by their importanceαi. To minimize the interfer-
ence between source-destination pairs, these algorithms maximize
the sum of the residual weighted max-flows1 between all ingress-
egress pairs. Upon the arrival of a connection request fromSi to
Di, the algorithms compute the sets ofcritical links Lj for all other
pairs (Sj , Dj)(j 6= i). A link l is calledcritical for an ingress-
egress pair(S, D), if the reduction inl’s capacity leads to the re-
duction in(S, D)’s max-flow. Then link costs are set according to
the link criticality, and shortest path is applied on this “properly”
weighted topology. Different weighting methods lead to variations
of MIRA. The resulting path is called theminimum interference
path. For further details about MIRA we refer to [23]. The New
MIRA and SMIRA algorithms seek to improve MIRA in compu-
tation complexity or weighting methods. For further details about
New MIRA and SMIRA, we refer to [21] and [25] respectively.
The above routing algorithms have all been evaluated in [26].

The link-state update policy is responsible for monitoring the
available capacity of each link and the distribution of that informa-
tion across the network in conformance with the policy. The update
policies can be classified into three categories [27, 28]: time-based,
trigger-based and window-based. With time-based policies updates
on the link-state information are triggered by the actual time. The
time-based update policy implemented in DeSiNe is theperiodic
update policy, where updates are sent at fixed time intervals.

Trigger-based policies monitor the real link-state information and
send updates when some conditions are met. Two trigger-based
policies are implemented: threshold-based and class-based. With
threshold-based policies, updates are triggered when the relative
difference between the current link state and the advertised link
state exceeds a certain threshold. A class-based policy divides
the link capacity into a set of classes. When a class boundary is

1The max-flow for an ingress-egress pair(S, D) is the maximum
amount of traffic that can be pushed between this pair. Multiple
link-disjoint paths may be used.

crossed, an update is triggered.
Finally, the window-based policies are used in combination with

trigger-based policies and circumvent the problem when the link
utilization oscillates around a class boundary or when the traffic is
very bursty (threshold-based). Two window-based policies are cur-
rently available: hold-down timer and moving-average. The hold-
down timer is used to set a minimal spacing between two succes-
sive updates. The moving-average takes the average link utilization
over a fixed-size time-window and based on this average an update
event may be triggered.

4. APPLICATIONS OF DESINE
DeSiNe is able to simulate the performance of various routing

algorithms and link-state update policies under different network
and traffic scenarios. It can be used to evaluate new routing al-
gorithms or link-state update policies by comparing them with the
existing ones under the same network and traffic conditions. Due
to its modular design, custom routing algorithms and link-state up-
date policies can be easily added to the simulator and evaluated
thereafter. Network and traffic, under which routing algorithms or
link-state update policies will be evaluated, can be configured in
flexible ways. Users can define their own performance metrics,
e.g. the maximum link utilization, the sum of max-flows, etc., and
set them as output.

In this section, we illustrate the use of the simulator on different
kinds of scenarios with selected routing algorithms, link-state up-
date policies, network and traffic scenarios, and performance met-
rics, to show some of the features of DeSiNe. In Section 4.1, we
compare the performance of different link-state update policies and
routing algorithms, where the flows come and leave according to
certain processes. We use a number of flows to reach a steady state,
and then take statistical results. In Section 4.2, we show the per-
formance of different traffic engineering algorithms. Moreover, we
study the performance of classes of networks by using randomized
samples of such a class. The results are presented in Section 4.3,



where we study the Erdös-Renyí and Barabási-Albert classes of
networks.

4.1 Link state updates
We compare, for a given topology, the performance of differ-

ent link-state update policies and routing algorithms. We use the
MCI topology. The MCI topology consists of 19 nodes, out of
which 11 nodes are edge nodes and the remaining 8 are core nodes,
connected by 33 links. Each link is bidirectional and assigned
600MB/s capacity. A bidirectional link acts as two unidirectional
links both with the assigned capacity. The setting of the scenario is
the same as in [29].

The arrival process of the incoming traffic flows is modeled as a
Poisson process with rateλ flows per second. Source-destination
pairs are uniformly selected among the set of edge nodes. The ser-
vice time of flows, i.e. the flow duration, is described by an ex-
ponentially distributed random variabled with mean10 seconds.
We denote byCr the capacity requirement of each flow, which is
uniformly distributed within[15, 45] MB/s.

Following [29], the network load is defined as:

ρN = λE [d] E [Cr] E [h] /L,

where E[d] is the mean flow duration, E[Cr] is the mean capacity
requirement, E[h] is the mean hop count of the shortest paths be-
tween all pairs of source and destination nodes, andL is the number
of links in the network.

The comparison of several LSUPs and routing algorithms is given
in Figures 5(a) and 5(b). Dijkstra’s shortest path and widest shortest
path [2, 30] routing algorithms are selected both with the Min-Hop
link weight function. For each LSUP, we choose one set of pa-
rameters for the simulations. For example, for the threshold based
moving average LSUP, we set the threshold to be0.2 and the win-
dow size to be5.

Figure 5(a) shows how each combination of LSUP and routing
algorithm behaves as a function of the network load. Most of the
evaluated LSUPs give a better behavior under the widest shortest
path routing algorithm than under the shortest path routing algo-
rithm. Widest shortest path is known to be better in load-balancing
traffic across the network than shortest-path routing.

The updates per flow shown in Figure 5(b) estimate the protocol
overhead. The moving average LSUPs adapts to the traffic den-
sity. As the network load increases, the update rate for the mov-
ing average LSUPs increases as well. The time sensitive LSUPs
set limitations on the period between 2 updates. As we only tune
λ in order to get different network loads, the higher the network
load, the smaller the flow arrival interval. The periodical LSUP
generates less updates with a higher network load, because under
a higher network load there are more flows in a period. The other
time sensitive LSUPs take both the time and trigger conditions into
account, and give smooth curves for the update rate.

4.2 Routing with traffic engineering extensions
The scenario in this section illustrates the performance of differ-

ent routing algorithms with traffic engineering extensions. We im-
plemented the scenario of [23]. The network consists of15 nodes
and28 bidirectional links. The capacity of core links is4800 units,
and that of the other links is1200 units. Traffic transits between
4 pairs of ingress-egress nodes. Flows with their capacity require-
ments following the same uniform distribution between1 unit and
3 units, arrive in a Poissonian manner with the same mean rate
for all these4 pairs. Once a flow is routed and setup successfully
in the network, it will never leave the network. We computed af-
ter each request the residual max-flow of each ingress-egress pair.
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(a) Performance measured as the ratio of blocked flow re-
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(b) The average number link updates due to the arrival and
departure of one flow.

Figure 5: Simulation results for the MCI topology under vary-
ing network load, where the shortest-path (SP) and widest-
shortest-path (WSP) routing algorithms are used in conjunc-
tion with the threshold-based moving average (TMA), class-
based moving average (CMA), threshold-based hold-down
timer (THD), class-based hold-down timer (CHD) and periodi-
cal (PER) link-state update policies.

Figure 6 shows the results of1 of the 4 ingress-egress pairs used
in [23], (S1, D1) in their topology. We have selected the following
routing algorithms in Figure 6: static shortest path (SSP), widest
shortest path (WSP), dynamic shortest path with link weights be-
ing the inverse of residual link capacity (DSP-Inv), and two variants
of MIRA (MIRA-TM and MIRA-TM-Cap). MIRA-TM considers
in its weighting the traffic between ingress-egress pairs. As all the
ingress-egress pairs have the same amount of traffic, MIRA-TM in
this scenario is identical to SMIRA used in [23]. MIRA-TM-Cap
takes into account not only the traffic between ingress-egress pairs,
but also the residual capacity of the critical links.

The x-axis of Figure 6 gives the sum of the connection requests
that have been successfully routed in the network so far (total traf-
fic accepted). We scaled this sum to quantify the traffic demands.
The y-axis gives the normalized residual max-flow for(S1, D1).
We observe on Figure 6 that the two MIRA variants perform better
than the other routing algorithms, because MIRA aims at maximiz-
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Figure 6: Residual max-flow for pair (S1, D1)

ing the residual max-flow between any pair of source-destination
pairs. SSP and WSP perform as badly. DSP-Inv that computes
dynamic shortest paths depending on the inverse of the residual ca-
pacity performs better than both SSP and WSP. The two MIRA
variants perform best as they are designed to maximize the residual
max-flow on all source-destination pairs. We also observe that the
two MIRA variants lead to identical residual max-flow, as in this
case the min-cut of this pair does not allow to load-balance traf-
fic for pair (S1, D1) without impeding on the max-flow of other
source-destination pairs. The ability of traffic engineering traffic
differs among the source-destination pairs. Sometimes, alternate
paths that do not interfere with other pairs do not exist in the net-
work. Then, traffic engineering cannot help much in load-balancing
traffic between specific source-destination pairs since it will impede
on other source-destination paris in the network. Note that the re-
sults we obtain are consistent with those from [23].

4.3 Random Networks
Online generation of random networks is useful when compar-

ing the performance of a particular routing algorithm or link-state
update strategy between different classes of networks. Measures of
interest here can be the average hopcount, flow blocking or number
of updates. DeSiNe features several built-in topology generators
(see Figure 4).

Tables 1 and 2 show the results of several example scenarios
using Erdös–Renyí and Barabási-Albert graphs. Table 1 presents
the results when using periodic link-state updates. As expected,
the number of updates grows with the network size. Furthermore,
Table 1 shows that Barabási-Albert graphs cannot sustain as much
traffic as Erdös–Renyí graphs, for a comparable link density.

Blocked flows are those that cannot be routed due to a lack of re-
sources in the network. The rejected flows are the flows for which
routing is successful, but the setup fails due to stale link-state infor-
mation. In Table 2 the same networks are used, but now the time-
based moving average link-state update policy is used. Clearly, the
number of updates is drastically decreased while throughput is im-
proved at the same time.

5. CONCLUSIONS
In this paper, we have presented DeSiNe, a flow-level network

simulator. Compared to existing simulators, DeSiNe incorporates
in a unique fashion Quality of Service (QoS) routing, traffic en-
gineering and scalability. It provides an end-to-end solution from

N E [h] E [Facc] E [Fbl] E [Frej ] E [u] /Ftot

ER

100 3.77 391621 551 7828 120
200 4.16 396352 189 3459 240
300 4.37 397917 86 1996 363
400 4.55 398554 64 1381 482
500 4.68 398942 38 1019 601

BA

100 3.61 391164 51 8784 117
200 3.89 395601 5 4393 237
300 4.04 397035 1 2963 357
400 4.16 397795 0 2204 478
500 4.23 398188 0 1811 498

Table 1: Simulation results for Erdös-Renyí (ER) and
Barabási-Albert (BA) random graphs with varying N nodes,
and comparable link densities; for BA m = m0 = 3 and
for ER p = 2m

N
. The results are the averages computed over

100 random graph realizations and Ftot = 400.000 flow ar-
rivals. The widest-shortest path routing algorithm with peri-
odic LSUP has been used with window sizew = 50. In the
table, h is the hopcount,Facc, Fbl, Frej the accepted, blocked
and rejected number of flows, respectively, andu is the num-
ber of link-state updates.

N E [h] E [Facc] E [Fbl] E [Frej ] E [u] /Ftot

ER

100 3.76 399438 369 192 9.7
200 4.16 399837 98 65 10.6
300 4.39 399915 47 36 11.1
400 4.54 399946 30 23 11.4
500 4.67 399963 20 16 11.7

BA

100 3.11 399972 11 17 6.85
200 3.36 399992 2 6 7.43
300 3.49 399996 0 4 7.80
400 3.58 399997 0 3 8.06
500 3.65 399997 0 3 8.28

Table 2: Simulation results for Erdös-Renyí (ER) and
Barabási-Albert (BA) random graphs with varying N nodes,
and comparable link densities; forBA m = m0 = 3 and for
ER p = 2m

N
. The results are the averages computed over100

random graph realizations and Ftot = 400.000 flow arrivals.
The widest-shortest path routing algorithm has been used with
time-based moving average LSUP with window sizew = 50
and threshold0.1. The symbols correspond to those of Table 1.

topology generation to simulation and data collection. This makes
DeSiNe well-suited for the performance analysis at system-level of
new QoS routing and traffic engineering algorithms in any network
topology. DeSiNe has been written in C++ and is modularly built,
with extensibility as a major design goal. New algorithms, proto-
cols or other techniques can easily be incorporated into the existing
simulator. Moreover, DeSiNe is not built on top of any simulation
framework or libraries, which minimizes undefined behavior and
dependency issues. The source code is publicly available at the
Networking, Architectures and Services group website [31] under
the sectionResearch.
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