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Abstract. Small, low-cost IoT devices rely on floating-point (FP) soft-
ware emulation on 32-bit integer cores when the cost of a full-fledged
FPU is not affordable. Thus, the performance and code size of the FP
emulation library are decisive for meeting energy and memory-size con-
straints. We propose RVfplib, the first ISA-optimized open-source library
for single and double-precision IEEE 754 FP emulation on RV32IM[C]
cores. RVfplib is 59% smaller and 2x faster than the GCC emulation
library, on average. On benchmark programs, code size reduction is 39%,
and performance boost 1.5x. RVfplib is 5.3% smaller than the leading
closed-source RISC-V commercial library.

Keywords: RISC-V · Embedded · IoT · Floating-Point · Library · Size
· Performance.

1 Introduction

Low-cost Internet of Things (IoT) devices are often subject to tight constraints
on their silicon area and memory, which are precious resources in the embedded
systems domain and impact cost and energy consumption [8]. At the same time,
processing FP workloads is a common requirement for many applications. FP
support enables programmers to satisfy the requirements on dynamic range and
precision. In addition, deriving the fixed-point variant of an algorithm proven
to be safe with floating-point numbers is often time-consuming and, in some
cases, very challenging. However, small cores cannot always afford hardware
Floating Point Units (FPUs) and rely on software emulation of FP instructions.
Consequently, the code to be stored in memory is inflated, inducing performance
overhead and increased total energy consumption due to higher execution times
and added memory accesses. The code size cost is particularly relevant since FP
emulation support can dominate the total code size of small programs, reaching up
to 8 kB just for the single and double-precision basic operations. In this scenario,
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using small and fast FP emulation libraries is necessary to be competitive in the
market.

The RISC-V Instruction Set Architecture (ISA) is gaining industrial traction
in IoT applications where cost is a major concern. The main challenge for RISC-V
low-cost microcontroller units (MCUs) is to reduce code size [3], as currently
experimental evidence shows that the Arm ISA (ARMv7-M), its mature compilers,
and highly size-optimized libraries generate smaller code on average [12, 15]. The
code size issue mainly affects applications that require FP arithmetic. In this
case, long FP software emulation functions add a remarkable code size overhead,
even if only a few FP computations are needed.

In this work, we present the following contributions:

1. RVfplib, the first open-source IEEE 7543 FP library for RISC-V, manually
optimized for low code size and high performance for both single and double-
precision FP. RVfplib is compatible with the RV32IM[C] ISA, and implements
addition, subtraction, multiplication, division, as well as comparisons and
conversions. Double-precision division is optional in RVfplib; it targets low
code size and is compatible with cores without an integer divider.

2. RVfplib nd, the reduced version of RVfplib that considers subnormal in-
puts/outputs as correctly signed zeroes. RVfplib nd is compatible with the
RV32EM[C] ISA and has smaller code size than RVfplib, making it the perfect
candidate for tightly memory-constrained devices.

3. A comparison of the code size and performance of all RVfplib functions
with their counterparts provided by libgcc. Moreover, we perform a code size
comparison between the functions in RVfplib nd and the ones available within
SEGGER emFloat, the current state-of-the-art closed-source competitor. We
also compare code size of RVfplib with the Arm-optimized libgcc code.

4. An analysis of the real code size and performance impact that RVfplib has
on full programs.

The rest of the paper is organized as follows: in Section 3, we describe the
structure of RVfplib and the main ideas that led to its development, as well as the
techniques used to optimize it and a code comparison with libgcc. In Section 4,
we present the experiments used to evaluate RVfplib figures of merit, and we
show the corresponding results in Section 5. We close our work with insights
about further improvements to RVfplib and the conclusion of the analysis in
Section 6 and Section 7.

2 Related work

Researchers have proposed different solutions to provide FP capabilities to a
core when the system area is strictly constrained. When a full-fledged FPU leads

3 The library presents some deviations from the standard. It does not support exception
flags, it produces only fixed quiet NaNs, and it provides nearest-even or toward-zero
rounding only.
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to an excessive area increase, designers can integrate a slower but tiny FPU,
crafted for tightly constrained IoT cores [2]. Another possibility is to implement
hardware/software approaches, in which hardware optimizations in the integer
datapath speed up critical operations used in the FP emulation libraries [13].
Nonetheless, both the solutions can be adopted only if the system tolerates the
related area overhead, and do not apply to systems that already exist.

Integer-only cores that cannot afford an area increase can execute FP programs
only through FP emulation libraries, usually provided by compiler vendors along
with their compilation toolchain. For example, the Arm Keil compiler comes
with the IEEE 754-1985 compliant fplib [1], and GCC with FP support within
libgcc, its low-level runtime library [10]. Since the optimization of these libraries
is essential for producing fast code with a low memory footprint, FP emulation
libraries can also be manually crafted at the assembly-level to ensure the best
code size and performance possible. libgcc provides optimized code for well
established ISAs like Arm but lacks customized support for relatively new ISAs
like RISC-V, which should rely on compiling the generic high-level FP emulation
C functions. The novelty of the RISC-V solution results in sub-optimal code size
and performance that makes it less attractive with respect to the Arm-based
alternatives.

In addition to what is available in compiler ecosystems, designers have imple-
mented optimized FP libraries for specific processors [14] [5] and for the maximum
flexibility and compliance with the IEEE 754 standard, like SoftFloat [19]. How-
ever, these solutions are non-RISC-V specific.

To the best of our knowledge, the only available assembly-optimized RISC-V
FP library is emFloat, designed by SEGGER [17]. However, this library is closed-
source and does not support subnormal values, flushing them to correctly signed
zeroes instead.

3 RVfplib design

RVfplib is the first open-source optimized FP emulation library for RISC-V
processors, for both single and double-precision FP. Its main goals are low code
size and increased performance. Implicitly, this implies lower energy consumption
thanks to the reduced memory bandwidth and execution time.

RVfplib is wholly written in RV32IM assembly. Thanks to the modularity
of the RISC-V C extension, it is also compatible with RV32IMC ISA since the
compiler can compress all the compressible instructions on request.

Functions in RVfplib adhere to the interface of the corresponding libgcc
functions [10] and have their same names to ensure compatibility with GCC and
a fast porting to real programs. The aliasing induces GCC to automatically link
using RVfplib functions, if implemented, instead of the ones from libgcc, without
additional modifications to the program. Therefore, there is no need to explicitly
call the RVfplib functions, as the compiler does it automatically.

RVfplib functions have been obtained with ISA-specific assembly level op-
timizations starting from the libgcc FP functions, with an approach similar to
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the one used for Arm [9]. Compliance with the IEEE 754 standard rules for FP
encoding and computation presents the same deviations that hold for the libgcc
FP support compiled with the default options, namely:

– Exception flags are not supported, and exceptional events only provide their
pre-defined output (i.e., divisions by zero result in a NaN).

– All the produced NaNs are quiet, in the form of 0x7FC00000 for single-
precision and 0x7FF8000000000000 for double-precision.

– Only the default round to nearest, ties to even rounding mode is supported
for the majority of the operations (as in the default libgcc implementation,
some of the conversion functions round toward zero).

3.1 Structure

RVfplib is a static library that comes in two different variants:

– RVfplib.a: the standard version, which targets low code size and increased
performance.

– RVfplib nd.a, which treats subnormal values as signed zeroes and shows an
even smaller code size.

Each variant includes the functions listed in Table 1, in which both the
SoftFloat and the libgcc names are reported. The two not-equal functions are
aliased with the equal ones, as they have the same behavior. Both libraries can
be compiled with particular code that can increase performance in the presence
of specific input operands, with an additional code size overhead. For example,
the multiplication can include code to deal with power-of-two operands, speeding
up the processing of specific patterns while increasing the code size. Choosing
between one implementation or the other depends on the system constraints and
input workloads.

To further push toward reducing the memory footprint of the library, we also
implemented part of the same FP support environment provided by SEGGER
emFloat, treating subnormal values as correctly signed zeroes. Thanks to the
reduced requirement for registers in its design, RVfplib nd is compliant with
the RV32EM ISA (i.e., with only 16 registers in the register file). The library
currently comes with a double-precision division that does not use any integer
hardware divider, which cannot be included in such small cores.4 For this reason,
this function is optional and is only included when targeting the smallest code
size possible. If performance is a more critical constraint, the standard double-
precision division from libgcc is used instead.

4 Such a processor would not be fully compliant with the RV32IM/RV32EM ISA since
the M extension also requires an integer divider. Nevertheless, the compiler allows
for avoiding hardware divisions even when compiling RV32IM code.
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3.2 Design choices

RVfplib benefits from some essential ideas that, together with the functional
algorithmic choices, contribute to crafting optimized RISC-V functions that
reduce code size and execution times.

1. Make the common case fast : FP algorithms take different decisions depending
on the received inputs and create different control paths within the code.
The latency of each function strongly depends on the inputs since different
data patterns are processed differently. Optimizing the paths taken by the
common input patterns (normal values) is a methodology for reducing the
average latency.

2. Avoid memory references: RVfplib minimizes data memory bandwidth re-
ducing register spilling in function prologues/epilogues. This is accomplished
by using only caller-saved registers. libgcc functions, on the contrary, do not
limit register usage and have bloated prologues/epilogues.

3. No function calls : Whenever the code makes a call, it must also save the return
address and, in general, any other already-used caller-saved registers. This
process leads to additional memory operations, stack pointer adjustments,
and additional jumps to/from the called function, with a consequent code
size increase and degraded performance. RVfplib contains only leaf-functions
(i.e., functions that do not make other function-calls). This property enables
RVfplib to be independent of other external libraries, minimizing the extra
code linked in the final binary. This is not the case for libgcc, as some of its
functions depend upon clzsi2() calls and the related table clz tab.

4. Maximize potential compression: The RISC-V C extension allows for com-
pressing the most common RISC-V instructions when precise register patterns
are used. For example, the majority of the instructions can be compressed
when using registers from the RVC (i.e., registers in the set a0, a1, a2, a3,
a4, a5, s0, s1). Since s0 and s1 are callee-saved registers, RVfplib does not
use them.

5. Register re-use: Register allocation is optimized at function level to overcome
heuristics of the compiler, whose analysis is mainly limited to the boundaries
of basic blocks. As a basic rule, an operand is placed in the first free register;
when it is no longer used, the register becomes free again.

6. Performance vs. code size tradeoff : Some RVfplib functions use loops to
perform iterative processes. For example, the leading zeroes count after a
numerical cancellation of an effective subtraction can be reduced to a shift-
and-check loop, in which the result is left-shifted until the implicit one returns
to its original position. This iterative process is convenient in terms of code
size, but it is slow and inefficient. For this reason, it is also possible to use a
bisection algorithm to count the leading zeroes, with better performance and
increased code size. The choice can be taken at compile time. In general, when
the taken-branch penalty is critical, unrolling the loop helps in maximizing
the number of non-taken branches.
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3.3 Comparison with libgcc

FP functions from libgcc use a complex set of hierarchical C macros to be as
flexible and generic as possible. When compiling the library, it is possible to set
specific high-level parameters to control how the library will treat exceptions,
subnormals, roundings, etc. With the default settings, no exception is raised or
handled, subnormal values are not flushed to zero, and the rounding mode is
rounding to nearest, ties to even (RNE). Even with these minimalistic options,
the generated code is sub-optimal in terms of size and performance.

In List. 1.1, we report the assembly code of eqsf2() compiled with GCC
10.2.0 and optimized for size (-Os), together with comments and labels that we
added to help the reader understand the code. This function, one of the smallest
of the library, returns 1 if the inputs are not equal, and 0 if they are equal. The
algorithm is straightforward:

1. If at least one input is NaN, return 1.
2. In the case of +0 and -0, return 0.
3. If the numbers are equal, returns 0; otherwise, return 1.

The libgcc function unpacks both the operands in their sign, exponent,
and mantissa before starting the comparison. In eqsf2(), this operation is
unnecessary and is probably performed to adopt a common coding standard for
the library design. Moreover, separately comparing sign, exponent, and mantissa
improves the code readability but discards possible optimizations.

1 __eqsf2:

2 # Unpack operands , prepare checks

3 srli a3 ,a0 ,0x17

4 lui a5 ,0x800

5 addi a5 ,a5 ,-1

6 srli a2 ,a1 ,0x17

7 andi a3 ,a3 ,255

8 li a7 ,255

9 and a6 ,a5 ,a0

10 srli a4 ,a0 ,0x1f

11 and a5 ,a5 ,a1

12 andi a2 ,a2 ,255

13 srli a1 ,a1 ,0x1f

14 # Check and compare

15 checks_0:

16 li a0 ,1

17 bne a3 ,a7 ,checks_1

18 bnez a6 ,return

19 bne a2 ,a3 ,return

20 beqz a5 ,checks_2

21 return:

22 ret

23 checks_1:

24 beq a2 ,a7 ,return
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25 bne a3 ,a2 ,return

26 bne a6 ,a5 ,return

27 checks_2:

28 li a0 ,0

29 beq a4 ,a1 ,return

30 li a0 ,1

31 bnez a3 ,return

32 snez a0 ,a6

33 ret

Listing 1.1: eqsf2() disassembled libgcc code

In List. 1.2, we show the eqsf2() function extracted from RVfplib. Writing
in assembly allows to have a better control over the used instructions and registers
when the functions are sufficiently small. All the checks are performed without
unpacking the operands, and we opportunistically reuse the register a5 to reach
the desired outcome during the final snez comparison.

1 __eqsf2:

2 lui a5 ,0 xff000

3 # Check for NaNs

4 slli a2 ,a0 ,0x1

5 bltu a5 ,a2 ,end

6 slli a3 ,a1 ,0x1

7 bltu a5 ,a3 ,end

8 # Check for +0, -0

9 or a5,a2,a3

10 beqz a5 ,end

11 # Effective comparison

12 xor a5 ,a0 ,a1

13 end:

14 snez a0 ,a5

15 ret

Listing 1.2: eqsf2() RVfplib code

We aimed to reach the same optimization level implementing the algorithm
of List. 1.2 using C, and we managed to halve the code size of the libgcc function
from 84 B to 42 B, showing the importance of choosing an optimized algorithm.
However, the generated code is still 16% larger than the one generated from our
assembly.

Forcing the compiler to reuse precise registers and take branches in a deter-
ministic way is more natural in assembly than in C; during the compilation of our
C function, the compiler creates unexpected intermediate operations and register
moves, with negative effects on both code size and performance.

The same is true for the more complex functions of the library. Functions from
libgcc are safe, generic, flexible, and parametric, but this comes at the expense
of possible critical optimizations in key functions, where more precise control
over the registers and the branch choices would be preferred. Assembly language
helps consider a register as a container for a value, without a precise label and
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meaning as in C; therefore, a more opportunistic usage of the registers comes
more natural, without the need of forcing the compiler to behave in a precise
way.

3.4 Testing

To test RVfplib, we relied on TestFloat [20], which provides an extensive IEEE
754 testing suite for generating test-cases and checking the correctness of custom
FP implementations. Internally, TestFloat uses the fully IEEE 754 compliant
SoftFloat library [19] as a golden reference. We generated the inputs for each
function with the TestFloat engine and compared the function outputs with both
SoftFloat and libgcc golden models. Since not all functions in RVfplib have a
SoftFloat implementation, we used libgcc as a golden model when it was needed
(e.g., for the “greater [or equal] to” functions).

4 Experimental setup

To analyze the impact of RVfplib, we evaluated its code size and performance
metrics in both a synthetic environment and using real programs. In the first set
of experiments, we extracted the code size of each function; in the second one,
we evaluated the behavior of RVfplib on real benchmarks.

4.1 Benchmarks

Since we evaluate an FP library useful for area-constrained embedded devices, we
selected all the Embench benchmark suite applications [4] that use FP numbers
(cubic, minver, nbody, st, ud, wikisort). On the other hand, we selected three
popular algorithms that can be run on small systems at the edge, on both single
and double-precisions: a convolution (conv), a fast Fourier transform (fft), and
a discrete wavelet transform (dwt).

4.2 Code Size

RVfplib implements most of the FP functions provided by libgcc and all the
implicit arithmetic functions available in emFloat. Therefore, we evaluated the
code size of the functions of our library and compared them against the two
competitors. The code size of the emFloat functions is publicly available for
RV32IMC ISA [17]; thus, we compiled both RVfplib and libgcc functions with
the same target using GCC 10.3 and libgcc originally compiled with the -Os
flag enabled, its default setting. The functions were linked to a fixed C program,
and the code size of the functions extracted from its disassembly-dump. To
create realistic conditions for embedded devices and avoid intricate dependencies
and code size bloating, we always linked our programs against libc nano and
libm nano. For a fair analysis, we compared RVfplib and libgcc since both are
compiled for minimum code size and support subnormal values, and RVfplib nd
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with emFloat since both flush subnormal values to zero and target minimum
code size as well.

Since libgcc is freely available, we extended our comparison linking our real
benchmarks against RVfplib and RVfplib nd first, and then libgcc. To measure
the code size impact that the libraries have on the read-only memory footprint,
we added the size of the .text and the .rodata sections. Since some programs use
the FP division, we also measured their code size when linked against RVfplib
with fast divisions (the double-precision one belongs to libgcc).

To complete the code size analysis, we measured the code size of the Arm-
optimized libgcc FP library and compared it with the code size of both the
generic RISC-V libgcc support and RVfplib.

4.3 Performance

On the performance side, a full profiling of RVfplib and libgcc was performed
for both the single average latencies of the functions and the execution time of
the benchmarks. In the following, when referring to a function, the term latency
indicates the number of cycles required to execute it.

To evaluate the function latencies, we simulated a synthetic C program on
the CV32E40P processor [6] with single-cycle latency memories using Mentor
QuestaSim, repeating the experiment for each function of the compared libraries.
The C program is composed of a loop that makes an explicit call to the function
under test during each iteration and measures the latency of each function
execution, including the jump/return to/from function cycles, and then averages
the total cycle count on the number of iterations. Each function is fed with
10000 randomly generated values within (0,1), and the overhead of the load/store
operations before and after the call is not considered. Using 1-cycle fixed-latency
memories is a best-case scenario for libgcc performance, as libgcc accesses the
stack inside its FP functions while RVfplib does not, as we avoided in-function
memory requests. Additional memory latency/miss penalties negatively affect
only the functions from libgcc.

We also compare our results to the average latencies reported by SEGGER
emFloat [17]. It is unclear, however, whether this reported performance includes
latency overheads from function calls and function returns. These overheads,
as well as processor-specific branch- and jump penalties, can strongly affect
performance, especially for small functions. SEGGER extracted performance
metrics using a GigaDevice GD32VF103 [18], which is based on a variable 2-stage
pipeline RISC-V core [7]. It is likely that the jump/branch penalties of CV32E40P
(from 2 to 4 cycles) [11] are higher. Moreover, SEGGER only reports latency
results of their “performance-optimized” emFloat library, which is different from
the one used for the code size results. For this reason, we used our fast single-
precision division and the double-precision division from libgcc to perform this
comparison.

To provide insight into how RVfplib affects the execution time, we simulated
our benchmarks with SPIKE, a RISC-V simulator for a simple processor that
executes one instruction per cycle, and reported the different instruction counts



10 M. Perotti et al.

linking with libgcc, RVfplib, and RVfplib nd. Since some benchmarks use the
double-precision division, we also reported the execution times of the programs
linked with RVfplib with fast divisions (the 64-bit division is taken from libgcc).

5 Results

5.1 Code Size

We show the code size of the single functions of RVfplib, libgcc, and emFloat
in Table 1. Comparing the total code size of the libraries, we achieve a net
gain of ≈60% by replacing libgcc FP functions with the ones in RVfplib. In
absolute terms, the memory savings reach 7.5 kB, which is a significant code
size reduction, especially for small programs. The small embedded systems we
target are area/memory size constrained and do not have hardware FPUs. Most
commonly, they require performing computations on single-precision data. As
such, our high code size reduction for the most frequent single-precision FP
operations (i.e., addition, subtraction, multiplication), which is around 67% on
average, is very significant. libgcc subtraction is automatically re-linked as a
function different from the addition, even if their code is shared except for one
initial sign change of the second operand. RVfplib subtraction flips the sign
and then executes an addition, without any other jump that would cause extra
latency.

Passing from RVfplib to RVfplib nd, which flushes subnormal values to
correctly signed zeroes, allows saving another 21.6% of the library code size.
This significant gain comes for free when supporting subnormal numbers is not a
requirement. RVfplib nd is almost 5.3% smaller than emFloat, even if the double-
precision division from emFloat is 30% smaller than the one from RVfplib nd.
The functions that gain the most from removing the subnormal support are
multiplication and division, as the addition needs only small adjustments to
process the denormalized inputs.

In Fig. 1, we summarize the code size results of our benchmarks. The code size
savings on libgcc span from 16% of cubic (with libgcc double-precision division)
to 60% (st with RVfplib nd) and are relatively high also for large code size
programs like fft64, which passes from almost 13.8 kB to 8.4 kB with more than
39% of saving. The average code size reductions with respect to libgcc are 39.3%,
36%, and 46.5% for RVfplib, RVfplib with libgcc fast divisions, and RVfplib nd,
respectively.

5.2 Performance

Average latencies of each function of RVfplib and libgcc FP support are summa-
rized in Table 2. RVfplib functions are always faster than the ones from libgcc,
except for the two small divisions, which are 1.45× and 2× slower for single and
double-precision, respectively. This fact underlines the importance of trying to
re-implement these operations, changing the core algorithm; nevertheless, RVfplib
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Table 1: Code size comparison between RVfplib, libgcc FP support, RVfplib nd,
and emFloat. Only the functions implemented in RVfplib are reported. Target
ISA: RV32IMC

Function libgcc Name Code Size [B]
RVfplib libgcc RVfplib nd emFloat

f32 add addsf3 320 804 274 410
f32 sub subsf3 6 818 6 10
f32 mul mulsf3 310 542 172 178
f32 div divsf3 294 590 188 184

(416)* (280)*

f32 lt ltsf2 56 120 56 58
f32 le lesf2 60 120 60 54
f32 gt gtsf2 52 120 52 50
f32 ge gesf2 60 120 60 62
f32 eq eqsf2 36 84 36 44
f32 ne nesf2 - - - -
f32 i32 fixsfsi 58 96 58 74
f32 ui32 fixunssfsi 50 88 50 50
f32 i64 fixsfdi 120 136 120 146
f32 ui64 fixunssfdi 80 100 80 98
i32 f32 floatsisf 60 186 60 66
ui32 f32 floatunsisf 48 154 48 52
i64 f32 floatdisf 106 258 106 96
ui64 f32 floatundisf 82 214 82 70
f32 f64 extendsfdf2 88 150 56 64
f64 add adddf3 736 1542 572 724
f64 sub subdf3 6 1560 6 10
f64 mul muldf3 506 1080 288 286
f64 div divdf3 742 1334 396 278

(1334)* (1334)*

f64 lt ltdf2 94 166 94 70
f64 le ledf2 96 166 96 70
f64 gt gtdf2 90 166 90 70
f64 ge gedf2 104 166 104 70
f64 eq eqdf2 60 106 60 52
f64 ne nedf2 - - - -
f64 i32 fixdfsi 62 100 62 84
f64 ui32 fixunsdfsi 54 96 54 54
f64 i64 fixdfdi 130 164 130 146
f64 ui64 fixunsdfdi 94 126 94 96
i32 f64 floatsidf 44 102 44 46
ui32 f64 floatunsidf 32 78 32 34
i64 f64 floatdidf 114 372 114 128
ui64 f64 floatundidf 90 328 90 106
f64 f32 truncdfsf2 158 284 104 130

Total 5100 12636 3994 4220
* RVfplib small divisions can be replaced with faster versions, yielding

better performance and extra code size.

divisions do not use the hardware integer divider, allowing for more flexibility,
and the division operation is not common in simple algorithms used on small
embedded systems. The fast 32-bit division in RVfplib is slightly faster than one
from libgcc, and the 64-bit one is the same. The single-precision comparisons
and both the multiplications show important speedups (up to 2.57× for the
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Fig. 1: Relative code size (.text+.rodata) of benchmarks linked against libgcc,
RVfplib, RVfplib with fast divisions, RVfplib nd. The reference is libgcc.

multiplication), and the single-precision addition in RVfplib is faster than the one
from libgcc by more than 1.5×. These data are promising, as these operations
are ubiquitous in almost every FP algorithm. The conversions from integers to
FP numbers are the functions that obtain the highest speed gain, which peaks
for converting a 64-bit unsigned integer to a double-precision FP value with more
than 4× lower latency. Replacing the whole set of libgcc functions with RVfplib
gives an average speedup of 2×.

As already pointed out, making a comparison between RVfplib nd and em-
Float performance using the average latencies reported by SEGGER is not
straightforward. We could not reproduce the experiment in the same conditions
since they used a device that is likely to show a lower cycle count if compared to
the CV32E40P core. Moreover, it is not specified whether the latency of the jumps
to/from functions was taken into account. This is especially valid for the smaller
functions, that can be strongly biased by the jump to/from function latency
overhead. However, if we focus on the bigger functions, the double-precision
addition in emFloat (the subtraction shares the code with the addition) and both
divisions are faster than the ones from RVfplib by factors around 2.7× and 1.9×,
for single and double-precision, respectively.

When we measure the instruction count of the real benchmarks linked against
RVfplib and libgcc, we obtain the data shown in Fig. 2. We chose these benchmarks
to have a good mix of realistic examples, and we found for RVfplib and RVfplib nd
an average speedup of 1.5× even if the benchmarks that use the double-precision
division in RVfplib are actually slower than the ones linked against libgcc. In
particular, wikisort uses the square root operation that uses the double-precision
division, which is also used by st. In some benchmarks (e.g., ud), RVfplib nd
performance decreases because of its 64-bit addition, which does not have a
fast-path for equal operands. All the other programs show high-speed gains
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Table 2: Average latency comparison between RVfplib, libgcc FP support,
RVfplib nd, and emFloat. Only the functions implemented in RVfplib are re-
ported.

Function libgcc Name Average Latency [cycles]
RVfplib libgcc RVfplib nd emFloat*

f32 add addsf3 50.6 79.5 52.1 49.5
f32 sub subsf3 72.9 114.7 72.4 62.2
f32 mul mulsf3 48 120 47 39.3
f32 div divsf3 252 190 252 67

(182.2)† (182.2)†

f32 lt ltsf2 18 41 18 11
f32 le lesf2 17 41 17 10
f32 gt gtsf2 16 41 16 10
f32 ge gesf2 17 41 17 11
f32 eq eqsf2 14 26.5 14 10
f32 ne nesf2 - - - -
f32 i32 fixsfsi 18.5 21 18.5 14
f32 ui32 fixunssfsi 16 23 16 13
f32 i64 fixsfdi 22 48 22 23.2
f32 ui64 fixunssfdi 18 44 18 18.9
i32 f32 floatsisf 29.5 88.5 29.5 32.6
ui32 f32 floatunsisf 22 78.7 22 33
i64 f32 floatdisf 41.5 131.4 41.5 49.1
ui64 f32 floatundisf 32.5 122 32.5 44.1
f32 f64 extendsfdf2 19 33 18 14.1
f64 add adddf3 87.2 101.1 83.9 62.8
f64 sub subdf3 116.5 138.5 114.9 82.8
f64 mul muldf3 85 219 85 75
f64 div divdf3 769.5 382.2 769.5 197.2

(382.2)† (382.2)†

f64 lt ltdf2 27 46.2 27 16
f64 le ledf2 26 46.2 26 16
f64 gt gtdf2 25 46.2 25 16.1
f64 ge gedf2 27 46.2 27 16.1
f64 eq eqdf2 24 30.5 24 14
f64 ne nedf2 - - - -
f64 i32 fixdfsi 19 19 19 16.8
f64 ui32 fixunsdfsi 17 21 17 13.8
f64 i64 fixdfdi 33 38.4 33 26.9
f64 ui64 fixunsdfdi 30.5 43 30.5 21.5
i32 f64 floatsidf 24.9 61 24.9 31.6
ui32 f64 floatunsidf 18.5 53 18.5 23.9
i64 f64 floatdidf 41 142 41 45.1
ui64 f64 floatundidf 31 134 31 39.3
f64 f32 truncdfsf2 25 61 28 25.1
* emFloat data were obtained from [17]. It is unclear whether reported

numbers include function call / function return latency overheads.
† RVfplib small divisions can be replaced with faster versions, yielding

better performance and extra code size.

thanks to the massive use of multiplications and additions. For RVfplib with
fast divisions, the average speedup grows to 1.6×, and the programs linked with
RVfplib are always faster than the ones linked with libgcc.
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Fig. 2: Relative SPIKE instruction count of benchmarks linked against libgcc,
RVfplib, RVfplib with fast divisions, RVfplib nd. The reference is libgcc.

5.3 Comparison with Arm

In Fig. 3, we show the code size comparison between the generic RISC-V libgcc
FP support, RVfplib, and the Arm-optimized libgcc FP support. RVfplib brings
the existing FP library code size gap between RISC-V and Arm from 8376 B to
840 B (10× less), reducing the Arm to RISC-V code size inflation from 196.6%
to 19.7%. Arm addresses many comparison-function calls to a generic compare,
reducing the total number of implemented functions and the library code size.
This choice can be implemented in future versions of RVfplib as well.

6 Further improvements

RVfplib will be released as an open-source project under GPL license, and everyone
will be allowed to contribute to its enhancement, improving and extending it.
SEGGER results unequivocally show that the 64-bit addition in RVfplib can be
further improved to decrease its average latency. Both the divisions can reach
increased code size and performance, maybe with different algorithmic choices
and exploiting the hardware divider. The optimal solution would be to offer
both a version that exploits the divider and one independent from it. On the
other hand, the library misses important functions, such as the square root and
the trigonometric ones, to be more versatile and further save precious memory
space and cycle counts. As already evaluated in [13], hardware support for Count
Leading Zeroes (CLZ) helps in speeding up the FP functions (e.g., addition,
truncation) and can also decrease their code size, replacing a block of instructions
with only one. Such support is already present in the PULP extension and in the
draft of the RISC-V B extension [16]. Another improvement to further save code
size would be merging in common functions the repeated code for dealing with
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Fig. 3: FP libraries code size comparison between RISC-V generic libgcc, RVfplib,
Arm-optimized libgcc.

subnormals/special cases, especially when such input patterns are uncommon,
and various comparison into one.

7 Conclusion

In this paper, we presented RVfplib, the first open-source assembly-optimized FP
emulation library for RISC-V small integer-only processors. The library imple-
ments the primary and most common single and double-precision FP operations
like addition, subtraction, multiplication, division, comparisons, conversions, and
adopts the same interface as libgcc to be easily linked by GCC against real
programs without any source-code modification. The library follows IEEE 754
standard guidelines for encodings and computations, with only minor and easily
modifiable differences. RVfplib is smaller than the libgcc FP support by almost
60% and, on average, 2× faster. We showed that, on real benchmarks, RVfplib
reduces the code size by 39% and speeds up the execution by 1.5× on average,
even when considering benchmarks that heavily use the less optimized functions
in RVfplib. If compared to the Arm-optimized libgcc library, RVfplib reduces
the Arm to RISC-V code size inflation from 196.6% (vs. RISC-V general libgcc
FP support) to 19.7%. We also presented RVfplib nd, which treats subnormal
values as correctly signed zeroes, and shown that its code size is 5.3% smaller
than the SEGGER emFloat FP library, the only available RISC-V optimized
FP emulation library, which is closed-source and treats subnormal values in the
same way.
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