Optimal Dislocation with Persistent Errors in
Subquadratic Time

Barbara Geissmann
Department of Computer Science, ETH Ziirich, Switzerland

Stefano Leucci
Department of Computer Science, ETH Ziirich, Switzerland

Chih-Hung Liu
Department of Computer Science, ETH Ziirich, Switzerland

Paolo Penna
Department of Computer Science, ETH Ziirich, Switzerland

—— Abstract

We study the problem of sorting N elements in presence of persistent errors in comparisons: In
this classical model, each comparison between two elements is wrong independently with some
probability p, but repeating the same comparison gives always the same result. The best known
algorithms for this problem have running time O(/N?) and achieve an optimal maximum disloca-

tion of O(log N) for constant error probability. Note that no algorithm can achieve dislocation
o(log N), regardless of its running time.

In this work we present the first subquadratic time algorithm with optimal maximum disloca-
tion: Our algorithm runs in 5(N 3/2) time and guarantees O(log N) maximum dislocation with
high probability. Though the first version of our algorithm is randomized, it can be derandomized
by extracting the necessary random bits from the results of the comparisons (errors).
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1 Introduction

We study the problem of sorting N distinct elements under recurrent random comparison
errors. In this classical model, each comparison is wrong with some fixed (small) probability
p, and correct with probability 1 — p. The probability of errors are independent over all
possible pairs of elements, but errors are recurrent: Repeating the same comparison several
times is useless since the result is always the same, i.e., always wrong or always correct.
Because of errors, different sorting algorithms can have different guarantees to output
a “nearly sorted” sequence. To measure the quality of an output sequence in terms of
sortedness, a common way is to consider the dislocation of an element, which is the difference
between its position in the output and its position in the correctly sorted sequence. In
particular, one can consider the mazimum dislocation of any element in the permutation or
the total dislocation of a permutation, i.e., the sum of the dislocations of all n elements. Of
course, the running time is also an important criteria for evaluating sorting algorithms.
Regarding the mazimum dislocation and the running time, in the recurrent random
comparison errors, this is the state of the art:
Several algorithms [3, 12, 9] guarantee mazimum dislocation O(log N) with high prob-
ability, though their running time is quadratic or even larger (see Table 1).
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Table 1 The running time of previous algorithms which guarantee O(log N) maximum dislo-
cation (with high probability) and our result. The constant ¢(p) in [3] depends on both the error
probability p, and the success probability of the algorithm, and it is typically quite large. The
algorithms in [12, 9] have different guarantees on the total dislocation.

Braverman and Mossel [3] | Klein et al [12], Geissmann et al [9] | This work

Time O(N3+e®)) O(N?) O(N?3/?)

No algorithm (even randomized) can achieve mazimum dislocation o(log N) with high
probability, regardless of its running time [9)].
This suggests naturally the following question:

Is there any algorithm with subquadratic running time which achieves optimal
maximum dislocation O(logn) with high probability?

In this paper we give an affirmative answer to this question.

1.1 Our contribution

We present the first subgquadratic time algorithm with optimal mazimum dislocation, namely,
an algorithm that runs in 6(]\[ 3/2) time and returns a sequence of maximum dislocation
O(log N) with high probability (see Table 1). The latter is optimal because, in the model
with persistent errors, no algorithm (even randomized) can achieve maximum dislocation
o(log N') with high probability [9]. Intuitively speaking, our algorithm (RECURSIVE WIN-
DOW SORT) first picks a random permutation and then performs a number of deterministic
operations which use the algorithm in [9] as a subroutine. All recursive steps are determin-
istic and they consist of an algorithm that approximately sorts an input sequence whenever
it is well shuffled and the errors are well spread. The latter condition holds with high prob-
ability in the error model we consider, and the starting random permutation serves to have
a well shuffled input. The correctness of RECURSIVE WINDOW SORT combines a technical
condition that the algorithm in [9] guarantees, combined with an intermediate “merge step”
which works well on well shuffled inputs (see Section 2 for an high level description of the
algorithm and the main ideas).

Though our first algorithm is randomized, it can be “derandomized” in the following
sense. By using the results of the comparison errors, the algorithm itself can generate the
necessary (almost) random bits to be used in the computation. Note that this is far from
trivial for two reasons: (i) The outcome of the comparisons are also used during the com-
putation and (ii) The result of a comparison may tell something about the result of another
comparison. Our second major contribution is a deterministic algorithm (DERANDOMIZED
RECURSIVE WINDOW SORT) which still runs in O(N3/2) and that returns a sequence of
maximum dislocation O(log N) with high probability (over the random comparison errors).

Connections with prior work

The algorithm by Braverman and Mossel [3] constructs the maximum likehood permutation,
whose computation requires a rather large (though polynomial) running time. Their method
in fact uses only O(N log N) comparisons and is applicable to any p < 1/2, while the faster
algorithms by Klein et al [12] and Geissmann et al [9] work for p smaller than some absolute
small constant (e.g., in [9] p < 1/16).
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Ajtai et al [1] provide algorithms using subquadratic time (and number of comparisons)
when errors occur only between elements whose difference is at most some fixed threshold.
Damaschke [6] gives also a subgquadratic time algorithm, by assuming that at most k errors
occur. The algorithm returns a sequence up to O(k) inversions and it is based on finding
a solution for the feedback arc set (FAST) problem. Coppersmith and Rurda [5] provide
a simple algorithm 5-approximation for the weighted FAST problem, if the weights satisfy
probability constraints.

An easier error model is the one with non-recurrent errors, meaning that the same
comparison can be repeated and the errors are independent with some probability p < 1/2.
For this model, Feige et al. [7] gave a sorting algorithm running in O(N log(N/q)) steps,
where 1 — ¢ is the success probability of the algorithm. Alonso et al. [2] and Hadjicostas
and Lakshamanan [11] studied the classical Quicksort and recursive Mergesort algorithms,
respectively. Sorting by repeatedly performing random swaps results in Markovian processes
which have been studied by Geissmann et al [8, 10].

Finally, computing with errors is often considered in the framework of a two-person game
called Rényi-Ulam Game (see Pelc’s survey [14] and Cicalese’s monograph [4]).

1.2 Preliminaries

In this section, we describe the key features of the WINDOW SORT algorithm [9] which will
be used a a subroutine of our main algorithm (see Algorithm 1). To this end, we first
introduce some notation used throughout the paper.

We consider the problem of sorting N distinct integers which, under the error model
considered here, is equivalent to sort a sequence containing the integers {1,2,..., N}. For
any sequence S, and any element x in the sequence, we define its rank as the number of
elements smaller than « in S, i.e., rank(z, S) 2 |{y € S| y < x}| . Note that this gives the
correct position of z (its rank plus 1) in the correctly sorted sequence, and it only depends
on the elements in S (not in the sequence order). In the following we will use £ > 1 to denote
a global constant that only depends on the error probability p. For ease of presentation, we
assume that p < 3—12, although our algorithm can be adapted to work for p < 1—16 (which is a
condition needed to successfully run WINDOW SORT). We say that a comparison between
an (unordered) pair of elements x,y, with x < y, is an error if x is (incorrectly) reported to
be larger than y.

» Definition 1. We define ERRORS(z,w,S) as the set of errors among the comparis-
ons between element x and every other element y in S with rank(y,S) € [rank(z,S) —
4w, rank(z, S) + 4w].

» Definition 2. For a set of elements S, we say that the comparison errors are well spread iff,
for all z € S and for all w such that xlog|S| < w < n, we have [ERRORS(z,w, S)| < w/4.

» Definition 3 (SuccEess). We say that (S, W), where S is a sequence and W a window
size, satisfies the SUCCESS condition if

1. The maximum dislocation of S is at most W

2. The comparison errors in .S are well spread.

This condition guarantees that the output of WINDOW SORT will have maximum dislo-
cation O(log |S]), where the initial window size determines its running time:

» Lemma 4 ([9]). WINDOW SORT on a sequence S with a starting window size W returns
a sequence having mazimum dislocation at most klogn in O(|S|- W) time whenever (S, W)
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Algorithm 1: WINDOW SORT (on a sequence S of n distinct elements and initial
window size W).

Initialization: The initial window size is w = W. Each element x has two variables
wins(z) and computed_rank(z) which are set to zero.
repeat
1. foreach z at position [ =1,2,3,...,n in S do
foreach y whose position in S is in [l — 2w,l — 1] or in [+ 1,1+ 2w] do
L if x > y then
| wins(z) = wins(z) + 1

computed_rank(z) = max{l — 2w, 0} + wins(x)

2. Place the elements into S’ ordered by non-decreasing computed_rank,
break ties arbitrarily.

3. Set all wins to zero, S = S’, and w = w/2.
until w < 1;

satisfies the SUCCESS condition. Moreover, the expected total dislocation of the returned
sequence is O(n).

» Lemma 5. For any sequence S of n elements chosen independently of the errors, the
probability (over the comparison errors) that errors are well spread is at least 1 —1/n8.

2 Warm up

In this section we informally describe some of the ideas used in our algorithm. As a warm
up, we consider a simplified (non-optimized) version which is described in Figure 1 and
consists of the following steps:

1. Start with a random permutation S of the input sequence and split this sequence S into
B blocks of the same size.!

2. Run WINDOW SORT on each block B; to obtain a sequence S;.

3. Combine all the sequences S; together into a sequence S’ as follows: The first element in
each S; will be placed (in arbitrary order) in one of the first 8 positions of S’, the second
element in each S; will be placed in a position between 3+ 1 and 23 in S/, and so on.

4. Run WINDOW SORT on this new sequence S’.
At this point two observations are in place. First, we did not specify yet some parameters,
namely, the number /3 of blocks (and thus their size N/3), nor the initial window size when
we call WINDOW SORT. Both these parameters need to be chosen carefully in order to
achieve the desired performance and, in our more complex scheme, they will vary at every
recursive call. Second, the initial step where we pick a random permutation of the input (the
elements to be sorted) can be implemented more efficiently by distributing directly these
elements into the desired number of blocks.

Saving in the running time

One intuition why this scheme should be faster than WINDOW SORT, is that in the first part
this algorithm is called on smaller blocks and the running time is thus O(N?/p3), since each

1 For the sake of simplicity, here and in the rest of the paper, we assume that |S| is a multiple of the
block size.



B. Geissmann, S. Leucci, Ch. Liu, and P. Penna

‘ S = random permutation of input sequence
|
|

split sequence in blocks

run WINDOW SORT on each block

15t element in each block
goes in first new block,

274 glement in each block

: : | goes in second new block, etc.
l run WINDOW SORT
‘ output sequence ‘ on the resulting sequence

Figure 1 The one-level recursion scheme.

block takes O((N/3)?) time. The last call to WINDOW SORT can be fast if S’ has already
a bounded maximum dislocation, since in this case we can start the algorithm with a small
initial window size.

Need for initial random permutation

To see why we perform this initial step, consider the version in which we start with the
sorted sequence, that is, S = (1,2,..., N). We claim that, in this case, it is very likely that
the sequence S’ obtained after recombining the blocks has large dislocation. Indeed, suppose
all the calls to WINDOW SORT sort perfectly each block. Then, S; = (1,2,...,N/§) and
Sy =(N/B+1,...,2N/j3), causing element 2 to be placed in S’ in position at least N/5+1.

Correctness argument

In order to get the desired bound on the maximum dislocation, we essentially need to show
that every call to WINDOW SORT on some subsequence of elements will be “successful”,
that is, the output will have a bounded maximum dislocation. Note that these calls are not
independent since the results of the comparisons (which depend on the errors) determine
the sequence S’ in the last call to WINDOW SORT. It turns out, that for any fixed subset of
elements and any fixed window size that is large enough (i.e., logarithmic in V), this property
holds with high probability (w.r.t. N). Moreover, the input sequence S’ in the last call of
WINDOW SORT involves all elements, while the other 3 calls for the blocks involve randomly
chosen subsets of elements (independent of the errors). As all these subsets are polynomially
many (we choose 8 accordingly below), all these calls to WINDOW SORT succeed with high
probability too (union bound).

3 The algorithm

We now describe the full version of our algorithm, which we call RECURSIVE WINDOW
SORT. Intuitively, our algorithm is a recursive version of the scheme described in Section 2
(see Figure 1), where the only randomized part is the initial shuffling of the input sequence,
which is performed only once. We refer to this random permutation of the input sequence as
S. All recursive steps are deterministic and they consist of an algorithm that approximately
sorts an input sequence whenever it is well shuffled and the errors are well spread.

We next describe the recursive steps of RECURSIVE WINDOW SORT. We denote by N the
total number of elements to sort. The behavior of our recursive algorithm varies according
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Algorithm 2: RECURSIVE WINDOW SORT (on N distinct elements).

Let S be a random permutation the N input elements
Run RECURSIVE STEP on S (with initial depth d = 0)
return the resulting sequence

Algorithm 3: RECURSIVE STEP (on a sequence S of ng distinct elements at depth
d).

Initialization: the maximum depth is h=log IV, the values 34 and Wy are chosen as in (1)
if d=h then

Run WINDOW SORT on S’ = S with window size ng
| return the resulting sequence

else
Partition S into by 2 g—j blocks Bi, B2, ..., By, each containing 34 elements
foreach block B; do
L Run RECURSIVE STEP on B; with depth d + 1 to obtain B; = (b; 1,b;2,...,b; 5,)
foreach j =1,2,...,84 do
| Bf = (b1, b0, bhy 5

Let S" = (s1,85,...,8n,) = (BY,By,...,Bj,)
Run WINDOW SORT on S’ with window size Wy
return the resulting sequence

to the current depth of recursion. The maximum depth of the recursion is A = log N.? In
general, a recursive step at depth d sorts an input sequence S of ng elements®, by splitting
S into blocks of size 54 and recursing on these blocks. Then, it recombines the elements
from the blocks in a zip fastener fashion into a single sequence S’, and runs WINDOW SORT
on S’ with window size W,;. We formally describe such a recursive step in Algorithm 3 and
RECURSIVE WINDOW SORT in Algorithm 2.

In order to optimize the running time, we shall set the parameters as follows:

1
1- oh—d+1_1

AN Mg
5(1 =Ny

A
and Wy =4k
T VB

log N. (1)

3.1 Running time

We begin by providing an upper bound on the running time of RECURSIVE WINDOW SORT.
» Lemma 6. The overall running time of RECURSIVE WINDOW SORT is O(N2).

Proof. Recall that the running time of WINDOW SORT on an instance of n elements
with starting window size W is upper bounded by ¢'nW logn for some constant ¢/ > 1
(Lemma 4). Consider an execution of our algorithm whose depth d defines an index
i = h —d. We now prove by induction on ¢ that its running time 7; is upper bounded
by c(i + 1)n;+21/(21+171) log N, where ¢ = 4xc’. (Notice that ¢ is a global constant that does
not depend on i.)

2 To avoid being distracted by rounding, we assume that h is an integer.
3 Here ny is a function of both N and d.
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If : = 0 then d = h and the running time coincides with the one of WINDOW SORT, i.e.,

o 142°/(2t -1
it is less than ¢'n? < cnd+ /(2 -1)

. This proves the base case.

For i > 0 the overall running time is bounded by the sum of: (i) the time required to
perform by = % recursive calls with depth d+1 (i.e., having index is h—(d+1) = (h—d)—1 =
i — 1), on instances of size 84 = ng+1, and (ii) the time required to run WINDOW SORT on

an instance of size ng and initial window size Wy = 4k \;;» log N. By inductive hypothesis,
d

gi—1 gi—1

L+ I
each of the recursive calls requires time T;_1 < cindﬂ(2 - log N = cif3, *~'log N. Thus

T, < M ﬂH%l N 4 drd " Jog N ; 5; S ) g N
R " log N +4kc —=1log N =c | wmngp;  +n B og
Ba ¢ VBa ¢ ¢

1_;,_,271. 1_;’__271. 1_;,_,271.
. 2t+1_1 2i+1_1 . 2t+1_1
:(:(md +ny )logN:c(z—i—l)nd -log N.

This completes the proof of the inductive step. By setting i = h, and for a sufficiently large
N
N, we obtain T}, < ¢(1 4 log N)N'T2v=1 . log N < 26(10gN)2N%+4N172. Since N78—7 =
log N
2782 = O(1) we conclude that T}, = O(N3/2log® N). <

3.2 Correctness

Here we will formally prove the correctness of RECURSIVE WINDOW SORT. To this aim,
we shall first give a sufficient condition for which, if all executions at depth d + 1 return
sequences of dislocation klog N, then also the execution at depth d returns a sequence of
dislocation at most xlog V.

» Definition 7 (GooD BLOCKS). We say that an execution of RECURSIVE STEP at depth
d < h has GooD BLOCKS if the sequence S to which we apply the recursion satisfies

< 24y/Bgqlog N, for G, =
rank(z,S) and L, = rank(z, B;), where B; is the block of length 54 = ngy1 containing .

the following condition: For any element z in .S, ’Lm — %GI

Note that the input of each execution (recursive call) of RECURSIVE STEP is a fixed subset
of elements of the initial sequence which does not depend on the comparison errors.

» Lemma 8. Consider an execution of RECURSIVE STEP at depth d < h and suppose that
the following conditions hold:

1. The execution has GOOD BLOCKS (Definition 7);

2. All the executions at depth d + 1 return a sequence with mazximum dislocation xlog N ;
3. The comparison errors are well spread.

Then, the considered execution returns a sequence with maximum dislocation klog N.

Proof. By hypothesis 3 together with Lemma 4, it suffices to show that the sequence
S’ obtained before invoking WINDOW SORT has maximum dislocation at most Wy =
4524 ]og N.* Consider an element x € S, let B; be the block containing x, and let L, be

V/Ba

the number of elements preceding z in B; (its position in B;- minus 1). By the hypothesis on

4 Notice that if the errors in S are well spread, then they are also well spread in S’ since the order of the
elements is irrelevant in Definition 2.

STACS 2018
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the executions at depth d + 1, we know that |Em — L,| < klog N and, since the considered
execution has GOOD BLOCKS, we can use triangle inequality to write
= Pa

L, ——G < 2y/Balog N + rlog N < 3k+/fqlog N.

Let G, be the number of elements preceding = in S’ (its position minus 1), so that |Gy — G|
is the dislocation of z in S’. By definition of S’ we have

kg
G, > MF s, - 3,y
Ba vV Ba 5

and similarly

_ ng drkng
Gy L+f G+ 410 N+ — <G, + log N .
<Gl s N+ 5 N

2| < 4584 160 N, which concludes the proof. <

VB4

» Lemma 9. The probability that all ezecutions of RECURSIVE STEP at depth d < h have
(jointly) GOOD BLOCKS is at least 1 — =

Therefore we have shown that ’(N?m —

Proof. Fix an element = and a depth d < h. Let S and B; be the sequence of size ng and its
block of size by = ng4+1 containing x. (Both S and B; are random variables as they depend
on the initial random permutation of all N elements.) Since S is a subsequence of a random
permutation we can study the distribution of L, by considering the following:

1. After the random permutation of the N input elements is chosen (thus S and B; are
determined), we randomly permute the elements of S again apart from = (which stays
in its position in S and in B;);

2. We view the previous item as the following experiment. An urn contains G, black balls
(elements smaller than z) and ng — G, — 1 white balls (elements bigger than z). Out
of these ng — 1 balls, choose 545 — 1 at random and consider the number of chosen black
balls (the local rank L,).

It is well known that, permuting a subsequence of a randomly chosen permutation, gives

again a randomly chosen permutation. Therefore the modification of Item 1 is equivalent

to the original algorithm. A random permutation of the elements in S determines which of
them fall into B; and thus Item 1 is equivalent to Item 2. The number of chosen black balls
is the local rank L, of x. We hence have that L, is distributed as an hypergeometric random

variable of parameters ng — 1, G, and S5 — 1 and we can use the following tail bound [15]:

Pr(|L, — E[L,]| > t(B4 — 1)) < 2¢72(Fa=1) |

, we obtain

where E[L,] = 5‘1 L 1G .. By choosing t = 2

Pr(|L, — 246G, | 2 3v/alog V) < Pr(|L, — D216l = 21/Balog V)

< Pr(|Ly — E[L,]| > 2/Balog N) < Pr(\Lz —E[Ly)| > 2y/Ba— 1log N) < ~—

Notice that the overall number of elements = for which the above condition must hold
is upper bounded by N log N. Indeed, there are h = log N recursion levels and each level
defines a partition of the N elements into blocks (i.e., the total number of elements at each
level is N). By the union bound, the probability that all the executions are good is at least
1— (NlogN)2: > == <
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The following two lemmas allow us to use Lemma 9 in a recursive fashion.
» Lemma 10. For every d =0,...,h, it holds that ng > Nz,

» Lemma 11. The errors of all the sequences S’ are (jointly) well spread with probability
at least 1 — ﬁ

We are now ready to prove the final theorem of this section.

» Theorem 12. RECURSIVE WINDOW SORT returns a sequence with mazimum dislocation
klog N with probability at least 1 — ﬁ Moreover, its running time is O(N%) and the
expected total dislocation of the returned sequence is O(n).

Proof. We assume that (i) all the recursive executions of RECURSIVE STEP have GOOD
BLocks and that (ii) all the sequences S’ used as input for WINDOW SORT have well spread
errors. By Lemma 9 and Lemma 11 this happens with probability at least 1 — %)

We prove the following claim by induction on ¢ = h—d: all the executions of RECURSIVE
STEP at depth d return a sequence having maximum dislocation log N.

If i = 0, then d = h. Consider any execution of RECURSIVE STEP at depth h and let
S be its input. Notice that WINDOW SORT is invoked on S with window size ng = |9|,
meaning that both conditions for Definition 3 are met and hence, by Lemma 4, WINDOW
SORT returns a sequence having maximum dislocation xlogng < klog N.

If ¢ > 0, then d < h and we once again focus on any single execution of RECURSIVE
STEP at depth d having input S. By inductive hypothesis all the executions at depth
d + 1 returned a sequence having maximum dislocation xlog N. This, combined with our
assumptions, allows us to invoke Lemma 8 which proves the first claim.

To conclude the proof, notice that the running time is bounded by Lemma 6 and that, by
Lemma 4, the sequence returned by the execution of WINDOW SORT at depth d = 0 has
expected total dislocation O(n). <

4 Derandomization

RECURSIVE WINDOW SORT requires as input a random permutation of the N elements.
In this section, we show how to derandomize the algorithm. In particular, we show how
to generate “almost random” bits from the outcome of element comparisons, which can be
thought as as biased coins tosses. The derandomized RECURSIVE WINDOW SORT is then as
follows: We extract a (random) subset of elements and use them to generate random bits.
Then, we use these bits to generate a random permutation of the remaining elements, which
allows us to invoke RECURSIVE STEP on this permutation. Finally, we reinsert the extracted
elements into the approximately sorted sequence, so that the maximum dislocation remains
O(log N). Notice that the sequence returned by RECURSIVE STEP (indirectly) depends
on the set of extracted elements though the results of their comparisons. We circumvent
this problem by providing an algorithm that is able to reinsert a single element in any
sequence having dislocation O(log N) as long as errors are well spread. We then show how
this algorithm can be used to reinsert all the extracted elements without any asymptotic
increase in the dislocation. For any two elements x and y we write z <y (resp. z>7v) to
denote the fact that = compared smaller (resp. larger) than y.

4.1 (Re-)Inserting one element

The first key ingredient is an algorithm which reinserts an element in a sequence of n elements
of maximum dislocation O(logn) so that this bound on the dislocation is maintained (up to
a multiplicative constant depending on p).
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Algorithm 4: INSERTPOSITION (on a sequence S = (sg,...,sp—1) of n distinct
elements and on an element = not in S).

// Compute a “penalty” function for each possible position.
1. For every index ¢ =0,...,n:
a. Let §;_ 2 {Si—catogn,---,Si—1} and Sit = {Si,--, Siteologn—17-
b. Let penalty,(z,S) = defeats (z, Si—) + wins (x, Si+).
// Return the position of minimal penalty.

2. Return any index i* € argmin;—o,...,» penalty,(z, S).

.....

» Definition 13 (single insertion). The single insertion problem is defined as follows. We are
given an arbitrary sequence® of n distinct elements, S = (sg,...,8,_1), whose maximum
dislocation is at most c¢; logn, for some ¢; > 1, and another element x distinct from all these
elements. The goal is to insert x in a position * which still guarantee clogn maximum
dislocation, for cp = %. That is, the sequence S' = (sq,...,8*—1,%,8i*,...,8,-1) has
maximum dislocation at most ¢y logn.

In the following, we consider these two quantities:
wins(x,Y)é\{er c x>yl and defeats(x,Y)é\{er s <y},

where x is an arbitrary element and Y an arbitrary subset of elements. Algorithm INSERT-
POSITION (see Algorithm 4 above) solves the single insertion problem with high probability:

» Theorem 14. Let S be a sequence of n elements having mazimum dislocation cilogn.
With probability at least 1 — % algorithm INSERTPOSITION returns an index i* such that the
sequence S" = (S0, ..., 8i—1,T, Six,...,8n—1) has mazimum dislocation at most % logn.

Intuitively, the proof of this result is based on the following two facts:
1. When i is away from the true (correct) rank of x in .S, there is a large penalty (Lemma 15);
2. When i is equal to the true (correct) rank of z in S, the penalty is small (Lemma 16).

» Lemma 15. If [i —r| > calogn then penalty;(z, S) > 52 (ca — 2¢1) log n with probability
at least 1 — %

» Lemma 16. penalty,(z,S) < 52 (ca — 2¢1) logn with probability at least 1 — .

Proof of Theorem 14. By Lemma 16 and by union bound on Lemma 15, we conclude
that with probability at least 1 — %, penalty,(x,S) < penalty,(z,S) for every i with
|i — 7| > calogn. In this case, the algorithm returns a index ¢*, such that |i* — r| < cologn.
Furthermore, the dislocation of each element between i* and r in S changes by at most 1,
and the dislocation of the other elements is unchanged. <

4.2 Generating almost random bits

The result 7 € {<,>} of comparison between two distinct elements z,y € S can be seen

A~ A~
as a biased coin if we label its faces with 0 = < and 1 = >: Since the comparison fails

5 Note that S can be adversarial and can also be chosen as a function of the comparison results, of the
true order of the elements, and of x.
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with probability p, but we do not know the correct answer, the coin is biased towards one
of its faces, i.e., either it lands on 0 with probability 1 — p and on 1 with probability p or
vice-versa. Moreover, the coin can be tossed at most once, since errors (or lack of thereof)
are persistent. Consider now a collection C of coins whose faces are labeled 0 and 1 and
let xo € {0,1} denote the outcome of the coin flip involving coin C' € C. For any subset

C ={Cy,Cy,...} CC we compute the exclusive or the results x(C) = Xcr ®Xe, DXes D
(where x(C) =0 if C =0).

The next lemma shows that we can generate an almost random bits with a sufficiently
large number of biased coin tosses (comparisons):

» Lemma 17. For any choice of the coin biases, and any subset C = {C1,Cq,...,} CC
such that |C| = Q(log N), 1 — 51 < P(x(C) =0) < 1 + w1. (For a suitable hidden constant
that depends on p).

Notice that the above lemma holds for any choice of the coin biases (i.e., regardless of
true order between the compared elements), therefore we can write the following

» Corollary 18. For any collection {CV) C?) ... ,C’(")} of pairwise disjoint subset of C,
each of size O(logn), and any r € {0,1}" we have that

(é_]\14)"<P((X(C(1)7,..,X(C(n)>):T) - (;—FA;)"

Finally, we show that we are able to generate random integers in an interval that closely
resemble a discrete uniform distribution.

» Lemma 19. Let{ < N. It is possible to generate a number z in 0, ..., €—1 using O(log2 N)
comparison results. With probability at most %, z will be a spurious result and we say that

the fail event happens. If the fail event does not happen, then z is uniformly distributed in
0,...,0—1.

4.3 Derandomized lterated Windowsort

We are now in a position to describe our deterministic algorithm DERANDOMIZED RECURS-
IVE WINDOW SORT (see Algorithm 5) and its analysis. We have already seen above how
to perform and analyze most of the algorithm’s steps. We will now give proofs for rein-
serting many elements at the same time in Step 7, and then present our main theorem for
DERANDOMIZED RECURSIVE WINDOW SORT. For the rest of this section we let c3 = 717“.
Moreover, we will say that DERANDOMIZED RECURSIVE WINDOW SORT fails if the fail event
of Lemma 19 happens at least once during the execution of the algorithm. The following
two lemmas bound the dislocation of the sequence S*) obtained by reinserting the elements

in R after RECURSIVE WINDOW SORT is invoked.

» Lemma 20. Suppose DERANDOMIZED RECURSIVE WINDOW SORT does not fail. Then,
with probability at least 1 — #, all the sets Ry = {r € R :i < rank(r,SM) <i+2c3log N},
for 0 <i < N, contain at most 6 elements each.

Proof. If there exists a set R; that contains 7 or more elements, then there exists a corres-
ponding set S; C S(*) that satisfies: (i) |Sj| < 2c3log N + 8, and (ii) |R; N S;| > 7.5

6 Indeed, it suffices to choose S; = {z € S© : j < rank(z, ) < j + 2¢3log,, +7}, where j =i + |{r €
R: rank(r,SW) < i}|.
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Algorithm 5: DERANDOMIZED RECURSIVE WINDOW SORT (on a sequence S =
(80y---,8n—1) of n distinct elements).

// Next step generates Q(IN) comparisons outcomes.
1. Let so be the first element in S. Compare so to every element in S = 5\ {so}
// This requires O(log* N) comparison outcomes.
2. Choose a set R of log®n (distinct) random elements from S (see Lemma 19).
// Next step generates Q(N log® N) comparison outcomes.
3. Compare each element in R with each element in S = §(®\ R
// This requires O(N log? N) comparison outcomes (using, e.g., Fisher—Yates shuffle [13]).
Obtain a random permutation S® of the elements in S*) (see Lemma 19).
Invoke RECURSIVE STEP on S® with initial depth 0 to obtain sequence S

For each element x € R, compute its position i}, in SG) using Algorithm 4.

Neo o s

Insert (simultaneously) each z € R in position i} of S® to obtain S®*
(break ties arbitrarily).

8. Insert so in S™ using Algorithm 4 to obtain S®®. Return .

We show that the probability that any single set S; exists is at most #, so that the
claim will immediately follow by using the union bound on the (at most N) values of i.

Notice that, since R is a random subset of elements of S(?), the probability that 7 or
more elements from R belong to S; can be upper bounded by the probability of success of
the following experiment: An urn contains |S(®)| = N — 1 balls, |R| of which are black; we
draw n = |S;| = 2c3 log N + 8 balls without replacement and we succeed if the number X of
drawn black balls is 7 or more.

Since X is distributed as an hypergeometric random variable of parameters N — 1, |R|,

and 7, we have (for sufficiently large values of N):

n (|R|) (N*|R|f1) n , (Nf})
Pr(X >7) =3 =y — < 2 1B 3
J=9 ( n ) j=7 ( n )
_ j (N —-1)! n(N —1-—n)!
—Z;IRI =N -1-n+j5! (N-1)

» Lemma 21. Suppose DERANDOMIZED RECURSIVE WINDOW SORT does not fail. With
probability at least 1 — %: (i) the maximum dislocation of S is at most c3log N + 6 and
(ii) the dislocations of an the element yinS®) increases by at most 6 in S,

All the previous lemmas together allow us to state the main result of this section.

» Theorem 22. Algorithm 5 is a deterministic algorithm that returns, in 6(N%) time, a
sequence with maximum dislocation O(log N) and total dislocation O(n) with probability at
least 1 — %
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