
A weighted corrective fuzzy reasoning spiking neural P system for fault
diagnosis in power systems with variable topologies

Tao Wang a,b,∗, Xiaoguang Wei c, Jun Wang a,b,∗, Tao Huang d, Hong Peng e, Xiaoxiao Song a,b,
Luis Valencia Cabrera f, Mario J. Pérez-Jiménez f
a Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, 610039, China
b School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China
c School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
d Department of Energy, Politecnico di Torino, Torino 10129, Italy
e School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
f Department of Computer Science and Artificial Intelligence, University of Sevilla, Avda. Reina Mercedes s/n, 41012, Spain

Keywords:
Fault diagnosis
Power system
Spiking neural P system
Fuzzy reasoning
Membrane computing
Cause–effect network

A B S T R A C T

This paper focuses on power system fault diagnosis based on Weighted Corrective Fuzzy Reasoning Spiking 
Neural P Systems with real numbers (rWCFRSNPSs) to propose a graphic fault diagnosis method, called FD-
WCFRSNPS. In the FD-WCFRSNPS, an rWCFRSNPS is proposed to model the logical relationships between 
faults and potential warning messages triggered by the corresponding protective devices. In addition, a matrix-
based reasoning algorithm for the rWCFRSNPS is devised to reason about the fault alarm messages using 
parallel representations. Besides, a layered modeling method based on rWCFRSNPSs is developed to adapt to 
topological changes in power systems and a Temporal Order Information Processing Method based on Cause–
Effect Networks is designed to correct fault alarm messages before the fault reasoning. Finally, in a case study 
considering a local subsystem of a 220kV power system, the diagnosis results of five test cases prove that the 
proposed FD-WCFRSNPS is viable and effective.

1. Introduction

One of the key goals when operating a power system is to reliably
supply electric power to end users (Chen, 2011; Wei et al., 2017; Wang
et al., 2019c). Unfortunately, faults are inevitable during power system
operation because of a range of issues, such as natural, accidental and
even malicious events (Huang et al., 2014; Bompard et al., 2016).
When failures occur, the faulty areas are isolated immediately from
the healthy parts of the system by protection relays, thus restricting the
impact of the failures. To correctly carry out a black start strategy in the
blackout area, it is critical to estimate which equipment is faulty. Thus,
it is of great importance to have a good fault estimation method (Chen,
2011; Xiong et al., 2013b; Wang et al., 2015e).

In recent decades, various approaches to estimate faulty equipment
have been proposed. These can be divided into three groups, based on
the fault information is gathered from (1) remote signals, (2) remote
measurements, or (3) multiple information sources. Methods in the
first group estimate the faulty equipment using state variables, such as
information about the operation of protective relays (PRs) and circuit
breakers (CBs), or measurements of the temporal information or the
start information of PRs from Supervisory Control And Data Acquisi-
tion (SCADA) systems. The second group instead considers electrical
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measurements (e.g., currents, voltages, the power, the phase or phase
angles) from Wide Area Measurement Systems (WAMSs) with Phasor
Measurement Units (PMUs). The last group uses both remote signals
and measurements, occasionally including remote pulse volumes and
control data. Of these three groups, the first has received the most
attention, yielding practical implementations using, such as Expert
Systems (ESs) (Lee et al., 2000; Ma et al., 2013; Vázquez et al., 1997),
Artificial Neural Networks (ANNs) (Huang, 2002; Thukaram et al.,
2005; Cardoso et al., 2008; Moghaddam et al., 2020), Optimization
Methods (OMs) (Wang et al., 2015a; Lin et al., 2010; Wen and Han,
1995; Wang and Zhao, 2019), the Fuzzy Logic (FL) (Chang et al.,
1997; Sun et al., 2004; Luo and Kezunovic, 2008; Chen, 2012; Chin,
2003; Zhou et al., 2020), Petri Nets (PNs) (Sun et al., 2004; Luo and
Kezunovic, 2008; Yang et al., 2010; Mahmoudi-Nasr, 2019; Jiang et al.,
2018), Bayesian Networks (BNs) (Chien et al., 2002; Zhu et al., 2006;
Yang et al., 2019), Cause–Effect Networks (CENs) (Chen, 2011, 2012;
Chen et al., 2011) and Spiking Neural P Systems (SNPSs) (Xiong et al.,
2013b; Wang et al., 2015e,b; Peng et al., 2013; Xiong et al., 2013a).
Each method has its own advantages and disadvantages, which are
described in Wang et al. (2015e) and Luo and Kezunovic (2008).

E-mail addresses: wangatao2005@163.com (T. Wang), wj.xhu@hotmail.com (J. Wang).

https://doi.org/10.1016/j.engappai.2020.103680
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2020.103680&domain=pdf
mailto:wangatao2005@163.com
mailto:wj.xhu@hotmail.com
https://doi.org/10.1016/j.engappai.2020.103680


Among the methods, the SNPSs-based ones are graphical models 
based on Fuzzy Reasoning Spiking Neural P Systems (FRSNPSs) and 
are somewhat unusual in their ability to both handle uncertainty and 
process information in parallel, which is a characteristic that is very 
important for diagnosing faults in power systems. Given that, this paper 
focuses on an SNPS-based fault diagnosis method and its application to 
estimate faulty equipment in power systems. The SNPSs (Ionescu et al., 
2006; Peng et al., 2019) are a new class of high performance distributed 
and parallel neural computing devices inspired by the behaviors of 
neurons. They send electrical impulses (spikes) along axons from presy-
naptic neurons to postsynaptic neurons, as shown in Fig. 1. Thus, an 
SNPS can further be represented by a directed graph, where nodes 
represent neurons, arcs are synapses indicating synaptic connections 
between neurons, and the information (spikes) flow along the arcs 
(synapses) (Díaz-Pernil et al., 2013; Zeng et al., 2014; Zhang et al., 
2015). SNPSs aim to incorporate specific ideas from spiking neurons 
into membrane computing and essentially combine Spiking Neural 
Networks (SNNs) (Zhang et al., 2014) with P systems (Păun, 2000; 
Song et al., 2017; Cabarle et al., 2017). Recently, SNPSs have received 
significant attention, in terms of investigating both their theory (Pan 
et al., 2017, 2018; Wu et al., 2018; Díaz-Pernil and Gutiérrez-Naranjo, 
2018) and applications (Wang et al., 2015b), where fault diagnosis is 
a very important application of SNPSs and is currently a hot topic that 
has yielded promising results.

To make SNPSs suitable for solving fault diagnosis problems, a 
Fuzzy Reasoning Spiking Neural P System with real numbers (rFRSNPS)
(Peng et al., 2013) has been proposed within an SNPS and membrane 
computing framework, and a parallel fuzzy reasoning algorithm has 
been developed for fault knowledge representation and reasoning. The 
rFRSNPS introduced probabilities to describe the potential values of 
spikes and the fuzzy truth values of neurons. That study is the first 
attempt to perform fault diagnosis using SNPSs for a simple case involv-
ing only one transformer. Even though the model is simple, it provides 
a foundation for SNPSs-based fault diagnosis methods. Subsequently, 
an rFRSNPS was applied to diagnosing power system faults for the 
first time and was test on three example power systems to verify 
its effectiveness (Xiong et al., 2013b,a). After that, Adaptive Fuzzy 
Reasoning Spiking Neural P Systems (AFRSNPSs) (Wang and Peng, 
2013) were also used to diagnose power system faults (Tu et al., 2014), 
demonstrating their ability to model weighted fuzzy production rules 
and showing that they can learn and adjust their weights automati-
cally. At that time, SNPS-based fault diagnosis models were developed 
step-by-step, but they should really use historical statistics, which are 
frequently difficult to obtain and update in practical engineering.

Consequently, to handle the incompleteness and uncertainty inher-
ent in the fault diagnosis of power systems and avoid historical data 
issues, an SNPS-based method called FDSNP (Wang et al., 2015e) was 
proposed. The FDSNP introduced a Fuzzy Reasoning Spiking Neural 
P System with trapezoidal fuzzy numbers (tFRSNPS) (Wang et al., 
2014b) to model potentially faulty equipment. In addition, an algebraic 
fuzzy reasoning algorithm was designed for the tFRSNPS to obtain 
fault confidence levels of the potentially faulty equipment, and fault 
fuzzy production rule sets were designed to describe the relation-
ships between faults and protection devices. For the first time, this 
gave us a clear algorithmic description of SNPS-based fault diagnosis 
methods and demonstrated the powerful ability of trapezoidal fuzzy 
numbers (Wang et al., 2015c) to deal with incomplete and uncertain 
fault information. This was crucial in promoting the study of SNPSs-
based methods. Later, Intuitionistic Fuzzy Spiking Neural P Systems 
(IFSNPSs) (Peng et al., 2018) were developed by introducing intuition-
istic fuzzy sets into the SNPS framework, and Fuzzy Reasoning Spiking 
Neural P Systems with interval-valued fuzzy numbers (ivFRSNPSs) (Yu 
et al., 2017; Wang et al., 2019a) were also proposed by combining 
interval-valued fuzzy numbers with SNPSs. To verify their effectiveness, 
both the IFSNPS and ivFRSNPS have been used to diagnose faults in a 
six-bus 69 kV distribution system. The triangular Fuzzy Spiking Neural

P System (TFSNPS) (Tao et al., 2017), which integrates triangular fuzzy
numbers into SNPSs, has also been proposed and used to create fault
diagnosis models for high voltage networks to verify their feasibility
and effectiveness in two example scenarios. The above methods deal
the incompleteness and uncertainty in alarm messages efficiently; how-
ever, they all strongly dependent on historical statistics or expertise.
Therefore, a fault diagnosis method for power transmission lines based
on an spiking neural P system with self-updating rules (Liu et al.,
2020) was proposed, where the attribute reduction capacity of rough
sets and the apoptosis mechanism of neurons were integrated in a P
system. Moreover, a new rough set-based bio-inspired fault diagnosis
method (Wang et al., 2020) for electrical substations was proposed.
The two methods can deal with uncertain and incomplete fault alarm
messages without historical statistic and expert experience.

Besides, SNPSs have also been used to diagnose faults in other
types of power systems. For example, the rFRSNPS has been applied
to diagnose faults in electric locomotive systems (Wang et al., 2014a),
describing the relationships between the breakdown signals and faulty
equipment in subsystems by building fault diagnosis models. In addi-
tion, Weighted Fuzzy Reasoning Spiking Neural P Systems (WFRSNPSs)
have been used to diagnose faults in traction power supply systems
(TPSSs) of China high-speed railways (Wang et al., 2015d), where
fault diagnosis production rules for TPSSs and corresponding WFRSNPS
models were created. A Modified Fuzzy Reasoning Spiking Neural P
System (MFRSNPS) (He et al., 2015) has also been proposed on the
basis of both an rFRSNPS and a tFRSNPS, and was applied to fault
diagnosis of metro traction power supply systems. Besides, a new
framework for the fault propagation path modeling of power systems
based on membrane computing was proposed in Wang et al. (2019b),
where an event spiking neural P system with neurotransmitter concen-
tration was devised to intuitively reveal fault propagation paths using
graphic models and parallel knowledge reasoning ability of SNPSs. That
work innovatively extended the application of SNPSs from a single
element to a system-wise investigation as well as from the post-ante
application to a new ex-ante framework.

Each of these SNPS-based fault diagnosis methods has its own
strengths and weaknesses. However, none of them consider temporal
order information, which is very helpful for correcting remote signals
from SCADA systems and hence improving the fault diagnosis results.
Consequently, a method based on a temporal fuzzy reasoning spiking
neural P system with real numbers (FDTSNP) was developed to diag-
nose power system faults (Huang et al., 2016), in which consistency
constraints on the temporal order information were used to correct
the alarm information. However, such constraint relationships are not
easy to understand and implement in real systems. In addition, none of
the aforementioned SNPS-based methods allow for the fault diagnosis
models to be adaptively rebuilt when the topology of a power system
changes, which is very important when operating power grids with
large and complex workloads in practice. So, further work must be
done to make best use of the temporal order information contained in
remote signals in a simpler way and design SNPS-based models that
can adapt to power system topological changes. Therefore, this paper
proposes a graphical Fault Diagnosis method based on Weighted Cor-
rective Fuzzy Reasoning Spiking Neural P Systems with real numbers
(rWCFRSNPSs), called FD-WCFRSNPS. The main contributions of this
paper are described as follows:

• Targeted to improve the correctness of fault diagnosis results
by correcting alarm messages in an objective way, this study
proposes a Temporal Order Information Processing Method based
on Cause–Effect Networks (TOIPM-CEN). The TOIPM-CEN is a
graphical method that can make the most of the temporal order
information in an intuitive and intelligible way, making it easy to
understand and implement.
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Fig. 1. Spiking neural P systems. (a) Illustration of a neuron. (b) A simple example of an SNPS.

• A layered modeling method based on rWCFRSNPSs is proposed.
It means our rWCFRSNPS-based fault diagnosis models are able
to adapt well to topological changes of power systems, which is a
key strength in the new power environment of the energy internet
that often involves changes in the topology.

• This paper proposes an rWCFRSNPS and its matrix-based rea-
soning algorithm to create the FD-WCFRSNPS, which offers an
intuitive graphical illustration of the problem (based strictly on
mathematical expressions), the ability to easily adapt diagnosis
models to topological changes, and strong fault tolerance (sup-
ported by a parallel design, fault confidence levels in [0, 1] and
the use of the temporal logic).

The remainder of this paper is organized as follows. Section 2
presents the rWCFRSNPS and its MBRA. Section 3 proposes the FD-
WCFRSNPS. Then, case studies are provided in Section 4. Finally,
Section 5 presents our conclusions and future research directions.

2. rWCFRSNPs

First, we define an rWCFRSNPS with one type of proposition neu-
rons and three types of rule neurons, describing the necessary syntax
and semantics in detail. After introducing the model, we then describe
the knowledge reasoning algorithm for the rWCFRSNPS, that is, the
MBRA.

2.1. Definitions

Definition 1. A Weighted Corrective Fuzzy Reasoning Spiking Neural
P System with real numbers (rWCFRSNPS) of degree 𝑚 ≥ 1 is a tuple

𝛱 = (𝑂, 𝜎1,… , 𝜎𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡) (1)

where:

(1) 𝑂 = {𝑎} is a singleton alphabet (𝑎 is called spike);
(2) 𝑄 = 𝑄𝑝 ∪ 𝑄𝑟 is the complete neuron set, consisting of the

proposition neuron set 𝑄𝑝 = {𝜎1,… , 𝜎𝑠} and the rule neuron set
𝑄𝑟 = {𝜎𝑠+1,… , 𝜎𝑠+𝑡}, where 𝑠 + 𝑡 = 𝑚;

(3) 𝑠𝑦𝑛 ⊆ {1, 2,… , 𝑚} × {1, 2,… , 𝑚} with (𝑖, 𝑖) ∉ 𝑠𝑦𝑛, for 1 ≤ 𝑖 ≤ 𝑚, is
a directed graph of synapses between the linked neurons;

(4) 𝑖𝑛, 𝑜𝑢𝑡 ∈ {1, 2,… , 𝑚} indicate the input neuron set and the output
neuron set of 𝛱 , respectively.

Each proposition neuron 𝜎𝑖 (1 ≤ 𝑖 ≤ 𝑠) is of the form (𝜃𝑖, 𝑡𝑖, �⃗�𝑖, 𝜆𝑖, 𝑟𝑖),
where

(1) 𝜃𝑝𝑖 is a real number in [0,1] representing the potential value of
the spikes (electrical impulses) contained in 𝜎𝑖;

(2) 𝑡𝑖 ∈ {0, 1} is the information correction parameter, which repre-
sents whether the information carried by the spike of proposition
neuron 𝜎𝑖 is valid (𝑡𝑖 = 1) or not (𝑡𝑖 = 0);

(3) �⃗�𝑖 = (𝜔𝑖,1,… , 𝜔𝑖,𝑀𝑖
) is a real number vector in (0, 1] representing

the output weight vector of the proposition neuron 𝜎𝑖, where
𝜔𝑖,𝑘 ∈ (0, 1], for 1 ≤ 𝑘 ≤ 𝑀𝑖, represents the weight of the 𝑘th
output arc (synapse) of proposition neuron 𝜎𝑖 and 𝑀𝑖 is a natural
number representing the number of pro-synaptic neurons of 𝜎𝑖,
that is, the number of synapses starting from 𝜎𝑖;

(4) 𝜆𝑖 is a real number in [0, 1) representing the firing threshold of
proposition neuron 𝜎𝑖;

(5) 𝑟𝑖 represents the firing (spiking) rule of the proposition neuron
𝜎𝑖 with the form 𝐸∕𝑎𝜃 → 𝑎𝛽 , where 𝜃 and 𝛽 are real numbers in
[0,1], and 𝐸 = {𝑎𝑛, 𝜃 ≥ 𝜆𝑖} is the firing condition.

Each rule neuron 𝜎𝑠+𝑗 (1 ≤ 𝑗 ≤ 𝑡) is of the form (𝜃𝑗 , 𝑐𝑗 , �⃗�𝑗 , 𝜆𝑗 , 𝑟𝑗 ),
where

(1) 𝜃𝑟𝑗 is a real number in [0,1] representing the potential value of
spikes (electrical impulses) it contains;

3



Fig. 2. Graphical representations of (a) proposition, (b) general rule, (c) and rule, and
(d) or rule neurons.

(2) 𝑐𝑗 is a real number in [0,1] representing its truth value, which
is equivalent to the certainty factor of its associated fuzzy pro-
duction rule;

(3) �⃗�𝑗 = (𝜔𝑗,1,… , 𝜔𝑗,𝑁𝑗
) is a real valued vector in (0, 1] representing

its output weight vector, where 𝜔𝑗,𝑘 (1 ≤ 𝑘 ≤ 𝑁𝑗) represents
the weight of its 𝑘th output arc (synapse), and 𝑁𝑗 is a natural
number representing the number of its prosynaptic neurons, that
is, the number of synapses starting from 𝜎𝑠+𝑗 ;

(4) 𝜆𝑗 is a real number in [0, 1) representing its firing threshold;
(5) 𝑟𝑗 represents its firing (spiking) rule in the form 𝐸∕𝑎𝜃 → 𝑎𝛽 ,

where 𝜃 and 𝛽 are real numbers in [0,1], and 𝐸 = {𝑎𝑛, 𝜃 ≥ 𝜆𝑗} is
the firing condition. The firing rule 𝑟𝑗 of the rule neuron 𝜎𝑠+𝑗 can
be applied at instant 𝑡 if and only if it receives at least 𝑛 spikes
at that moment with a potential value of 𝜃 ≥ 𝜆𝑗 . Applying rule
𝑟𝑗 consumes (remove) 𝑛 spikes and produces (emits) one spike;

The rWCFRSNPS involves four types of neurons, namely, proposition,
general rule, and rule and or rule neurons, and are defined as follows.
(These definitions are similar to those in Wang et al. (2015d), except
for some parameters and the ways that spikes are processed in neurons.)

Proposition neurons are associated with propositions in fuzzy produc-
tion rules. They are represented by circles and the symbol P, as shown
in Fig. 2(a), and the corresponding simplified form is shown in Fig. 3(a).
If the proposition neuron 𝜎𝑖 = (𝜃𝑖, 𝑡𝑖, �⃗�𝑖, 𝜆𝑖, 𝑟𝑖) is an input neuron, then its
initial potential 𝜃 = 𝜃𝑖 ∗ 𝑡𝑖, where 𝜃𝑖 is the information it receives from
the environment, 𝑡𝑖 is the information correction parameter, and 𝜃 is
the corrected results of environmental information received. Otherwise,
𝜃 is the result of applying a logical or operation to all the weighted
potential values it receives from its presynaptic rule neurons; that is,
𝜃 = max{𝜃1 ∗ 𝑡𝑖 ∗ �⃗�1,… , 𝜃𝑘 ∗ 𝑡𝑖 ∗ �⃗�𝑘}, where 𝜃1,… , 𝜃𝑘 are the
environmental potentials. The neuron’s firing rule 𝑟𝑖 is of the form
𝐸∕𝑎𝜃 → 𝑎𝜃 , where 𝐸 = {𝑎𝑛, 𝜃 ≥ 𝜆𝑖}; that is, the parameter 𝛽 of the
firing rule contained in such a neuron is identical to 𝜃. This rule can be
applied at instant 𝑡 if and only if the neuron receives at least 𝑛 spikes at
that moment with a potential 𝜃 ≥ 𝜆𝑖. Applying the rule 𝑟𝑖 consumes the
potential 𝜃 of spikes contained in the neuron and causes a new spike
with potential 𝜃 to be produced and emitted.

General rule neurons are associated with fuzzy production rules that
only have one proposition in their antecedents. They are represented
by rounded rectangles and the symbol 𝑅(𝑐, 𝑔𝑒𝑛𝑒𝑟𝑎𝑙), as shown in
Fig. 2(b), and the corresponding simplified form is shown in Fig. 3(b).
They only have one presynaptic proposition neuron, together with one
or more postsynaptic proposition neurons. If the general rule neuron
𝜎𝑗 = (𝜃𝑗 , 𝑐𝑗 , �⃗�𝑗 , 𝜆𝑗 , 𝑟𝑗 ) receives a spike from its presynaptic proposition
neuron and its firing condition 𝐸 = {𝑎𝑛, 𝜃≥𝜆𝑗} is satisfied, then it fires
by applying the rule 𝐸∕𝑎𝜃 → 𝑎𝛽 , producing a new spike with potential

Fig. 3. Simplified representations of (a) proposition, (b) general rule, (c) and rule, and
(d) or rule neuron.

𝛽 = 𝜃1 ∗ �⃗�𝑗 ∗ 𝑐𝑗 . Note that the potential 𝜃1 is produced and corrected
by the presynaptic proposition neuron of the neuron 𝜎𝑗 and 𝜃 = 𝜃1.

And rule neurons are associated with fuzzy production rules that
have more than one proposition in their antecedents, in an 𝑎𝑛𝑑 rela-
tionship. They are represented by rounded rectangles and the symbol
𝑅(𝑐, 𝑎𝑛𝑑), as shown in Fig. 2(c), and the corresponding simplified form
is shown in Fig. 3(c). They have more than one presynaptic proposition
neuron, but just one postsynaptic proposition neuron. If the and rule
neuron 𝜎𝑗 = (𝜃𝑗 , 𝑐𝑗 , �⃗�𝑗 , 𝜆𝑗 , 𝑟𝑗 ) receives 𝑘 spikes from its 𝑘 presynaptic
proposition neurons and its firing condition 𝐸 = {𝑎𝑛, 𝜃≥𝜆𝑗} is satisfied,
then it fires by applying the rule 𝐸∕𝑎𝜃 → 𝑎𝛽 , producing a new spike
with potential 𝛽 = 𝑚𝑖𝑛{𝜃1 ∗ �⃗�1,… , 𝜃𝑘 ∗ �⃗�𝑘} ∗ 𝑐𝑗 . Note that the
potentials 𝜃1,… , 𝜃𝑘 are produced and corrected by the presynaptic
proposition neurons of the neuron 𝜎𝑗 and 𝜃 = 𝑚𝑖𝑛{𝜃1 ∗ �⃗�1,… , 𝜃𝑘 ∗ �⃗�𝑘}.

Or rule neurons are associated with fuzzy production rules that have
more than one proposition in their antecedents, in an 𝑜𝑟 relationship.
They are represented by rounded rectangles and the symbol 𝑅(𝑐, 𝑜𝑟),
as shown in Fig. 2(d), and the corresponding simplified form is shown
in Fig. 3(d). They have more than one presynaptic proposition neuron,
but only one postsynaptic proposition neuron. If the or rule neuron 𝜎𝑗 =
(𝜃𝑗 , 𝑐𝑗 , �⃗�𝑗 , 𝜆𝑗 , 𝑟𝑗 ) receives 𝑘 spikes from its 𝑘 presynaptic proposition
neurons and its firing condition 𝐸 = {𝑎𝑛, 𝜃≥𝜆𝑗} is satisfied, then it fires
by applying the rule 𝐸∕𝑎𝜃 → 𝑎𝛽 , producing a new spike with potential
𝛽 = 𝑚𝑎𝑥{𝜃1 ∗ �⃗�1,… , 𝜃𝑘 ∗ �⃗�𝑘} ∗ 𝑐𝑗 . Note that the potentials 𝜃1,… , 𝜃𝑘
are produced and corrected by the presynaptic proposition neurons of
the neuron 𝜎𝑗 and 𝜃 = 𝑚𝑎𝑥{𝜃1 ∗ �⃗�1,… , 𝜃𝑘 ∗ �⃗�𝑘}.

2.2. MBRA

In order for rWCFRSNPSs to represent and reason about knowledge
efficiently, we propose the MBRA in this subsection. First, we intro-
duce several matrices and vectors, along with related multiplication
operators and functions. Then, we explain the algorithm in detail.
Throughout this subsection, the index 𝑖 (1 ≤ 𝑖 ≤ 𝑠) refers to the 𝑖th
proposition neuron 𝜎𝑖, whereas the index 𝑗 (1 ≤ 𝑗 ≤ 𝑡) refers to the
𝑗th rule neuron 𝜎𝑠+𝑗 . Now, we set out some essential notation for what
follows.

(1) 𝑾𝑝 = (𝜔𝑗𝑖)𝑡×𝑠 is a synaptic weight matrix representing the di-
rected connections with weights from rule neurons to proposition
neurons. Specifically, if there is a directed arc (synapse) from rule
neuron 𝜎𝑠+𝑗 to proposition neuron 𝜎𝑖, then 𝜔𝑗𝑖 (𝜔𝑗𝑖 ∈ (0, 1]) is equal
to the output weight of synapse (𝑗, 𝑖); otherwise, 𝜔𝑗𝑖 = 0.

(2) 𝑾𝑟1 = (𝜔𝑖𝑗 )𝑠×𝑡 is a synaptic weight matrix representing the di-
rected connections with weights from proposition neurons to gen-
eral rule neurons. Specifically, if there is a directed arc (synapse)
from proposition neuron 𝜎𝑖 to general rule neuron 𝜎𝑠+𝑗 , then 𝜔𝑖𝑗
(𝜔𝑖𝑗 ∈ (0, 1]) is equal to the output weight of synapse (𝑖, 𝑗);
otherwise, 𝜔𝑖𝑗 = 0.
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(3) 𝑾𝑟2 = (𝜔𝑖𝑗 )𝑠×𝑡 is a synaptic weight matrix representing the 
directed connections with weights from proposition neurons and 
and rule neurons. Specifically, if there is a directed arc (synapse) 
from proposition neuron 𝜎𝑖 to and rule neuron 𝜎𝑠+𝑗 , then 𝜔𝑖𝑗 (𝜔𝑖𝑗 ∈ 
(0, 1]) is equal to the output weight of synapse (𝑖, 𝑗); otherwise, 𝜔𝑖𝑗 
= 0.

(4) 𝑾𝑟3 = (𝜔𝑖𝑗 )𝑠×𝑡 is a synaptic weight matrix representing the 
directed connections with weights from proposition neurons to or 
rule neurons. Specifically, if there is a directed arc (synapse) from 
proposition neuron 𝜎𝑖 to or rule neuron 𝜎𝑠+𝑗 , then 𝜔𝑖𝑗 (𝜔𝑖𝑗 ∈ (0, 1]) is 
equal to the output weight of synapse (𝑖, 𝑗); otherwise, 𝜔𝑖𝑗 = 0.

(5) 𝑫1 = (𝑑𝑖𝑗 )𝑠×𝑡 is a binary matrix representing the directed con-
nections from proposition neurons to rule neurons. Specifically, if 
there is a directed arc (synapse) from proposition neuron 𝜎𝑖 to rule 
neuron 𝜎𝑠+𝑗 , then 𝑑𝑖𝑗 = 1; otherwise, 𝑑𝑖𝑗 = 0.

(6) 𝑫2 = (𝑑𝑗𝑖)𝑡×𝑠 is a binary matrix representing the directed con-
nections from rule neurons to proposition neurons. Specifically, if 
there is a directed arc (synapse) from rule neuron 𝜎𝑠+𝑗 to 
proposition neuron 𝜎𝑖, then 𝑑𝑗𝑖 = 1; otherwise, 𝑑𝑗𝑖 = 0.

(7) 𝑪 = 𝑑𝑖𝑎𝑔(𝑐1, … , 𝑐𝑡) is a diagonal matrix, where 𝑐𝑗 (1 ≤ 𝑗 ≤ 𝑡) is a 
real number in [0, 1] representing the certainty factor of the 𝑗th 
rule neuron 𝜎𝑠+𝑗 . 

(8) 𝑻 = 𝑑𝑖𝑎𝑔(𝑡1,… , 𝑡𝑠) is a diagonal matrix, called the information
correction parameters matrix, where 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑠) is a real
Boolean number in {0, 1} representing the information correction
parameter of the 𝑖th proposition neuron 𝜎𝑖, indicating whether
the information carried by its spike is reliable (𝑡𝑖 = 1) or not
(𝑡𝑖 = 0).

(9) 𝝀𝒑 = (𝜆𝑝1,… , 𝜆𝑝𝑠)𝑇 is the threshold vector for the 𝑠 proposition
neurons, where 𝜆𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑠) is a real number in [0, 1)
representing the firing threshold of the 𝑖th proposition neuron
𝜎𝑖.

(10) 𝝀𝒓 = (𝜆𝑟1,… , 𝜆𝑟𝑡)𝑇 is the threshold vector for the 𝑡 rule neurons,
where 𝜆𝑟𝑗 (1 ≤ 𝑗 ≤ 𝑡) is a real number in [0, 1) representing the
firing threshold of the 𝑗th rule neuron 𝜎𝑠+𝑗 .

(11) 𝜽𝑝 = (𝜃𝑝1,… , 𝜃𝑝𝑠)𝑇 is the (real-valued) truth vector for the 𝑠
proposition neurons, where 𝜃𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑠) is a real number in
[0, 1] representing the spike value of the 𝑖th proposition neuron
𝜎𝑖. If a proposition neuron does not contain any spikes, its spike
value is 0.

(12) 𝜽𝑟 = (𝜃𝑟1,… , 𝜃𝑟𝑠)𝑇 is the (real-valued) truth vector for the 𝑡
rule neurons, where 𝜃𝑟𝑗 (1 ≤ 𝑗 ≤ 𝑡) is a real number in [0, 1]
representing the spike value of the 𝑗th proposition neuron 𝜎𝑠+𝑗 .
Again, if a proposition neuron does not contain any spikes, its
spike value is 0.

(13) 𝒂𝑝 = (𝑎𝑝1,… , 𝑎𝑝𝑠)𝑇 is the spike number vector for the 𝑠 propo-
sition neurons, where 𝑎𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑠) is an integer number
representing the number of spikes in the 𝑖th proposition neuron
𝜎𝑖.

(14) 𝒂𝑟 = (𝑎𝑟1,… , 𝑎𝑟𝑡)𝑇 is the spike number vector for the 𝑡 rule
neurons, where 𝑎𝑟𝑗 (1 ≤ 𝑗 ≤ 𝑡) is an integer number representing
the number of spikes in the 𝑗th rule neuron 𝜎𝑠+𝑗 .

(15) 𝜷𝑝 = (𝛽𝑝1,… , 𝛽𝑝𝑠)𝑇 is the (real-valued) output spike value vector
for the 𝑠 proposition neurons before correction, where 𝛽𝑝𝑖 (1 ≤
1 ≤ 𝑠) is a real number in [0, 1] representing the output spike
value of the 𝑖th proposition neuron 𝜎𝑖 after it fires.

(16) 𝜷𝑟 = (𝛽𝑟1,… , 𝛽𝑟𝑡)𝑇 is the (real-valued) output spike value vector
for the 𝑡 rule neurons before correction, where 𝛽𝑟𝑗 (1 ≤ 𝑗 ≤ 𝑡) is
a real number in [0, 1] representing the output spike value of
the 𝑗th proposition neuron 𝜎𝑠+𝑗 after it fires.

(17) 𝒃𝑝 = (𝑏𝑝1,… , 𝑏𝑝𝑠)𝑇 is the output spike number vector for the 𝑠
proposition neurons after correction, where 𝑏𝑝𝑖 (1 ≤ 𝑖 ≤ 𝑠) is an
integer number representing the output spike number of the 𝑖th
proposition neuron 𝜎𝑖 after it fires.

(18) 𝒃𝑟 = (𝑏𝑟1,… , 𝑏𝑟𝑡)𝑇 is the output spike number vector for the 𝑡
rule neurons after correction, where 𝑏𝑟𝑗 (1 ≤ 𝑗 ≤ 𝑡) is an integer
number representing the output spike number of the 𝑗th rule
neuron 𝜎𝑠+𝑗 after it fires.

Next, we define some multiplication operators and functions relat-
ing to the above matrices and vectors.

(1) Multiplication operator ⊗:

𝑾 𝑇
𝑟1 ⊗ 𝜽𝒑 = (𝜔1,… , �̄�𝑡)𝑇 (2)

where 𝜔𝑗 = 𝜔𝑖𝑗 ∗ 𝜃𝑝𝑖, for 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑡. Eq. (2) is used to
calculate the spike values of general rule neurons.

(2) Multiplication operator ⊕:

𝑾 𝑇
𝑟2 ⊕ 𝜽𝒑 = (𝜔1,… , �̄�𝑡)𝑇 (3)

where 𝜔𝑗 = 𝑚𝑖𝑛{𝜔𝑖𝑗 ∗ 𝜃𝑝𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑠}, for 1 ≤ 𝑗 ≤ 𝑡. Eq. (3) is
used to calculate the spike values of and rule neurons.

(3) Multiplication operator ⊙:

𝑾 𝑇
𝑟3 ⊙ 𝜽𝒑 = (𝜔1,… , �̄�𝑡)𝑇 (4)

where 𝜔𝑗 = 𝑚𝑎𝑥{𝜔𝑖𝑗 ∗ 𝜃𝑝𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑠}, for 1 ≤ 𝑗 ≤ 𝑡. Eq. (4) is
used to calculate the spike values of or rule neurons.
or

𝑾 𝑇
𝑝 ⊙ 𝜽𝒓 = (𝜔1,… , 𝜔𝑠)𝑇 (5)

where �̄�𝑖 = 𝑚𝑎𝑥{𝜔𝑗𝑖 ∗ 𝜃𝑟𝑗 ∣ 1 ≤ 𝑗 ≤ 𝑡}, for 1 ≤ 𝑖 ≤ 𝑠. Eq. (5) is
used to calculate the spike values of proposition neurons.

(4) Firing function of spike values: 𝜷𝒍 = 𝑓𝑖𝑟𝑒(𝜽𝒍,𝒂𝒍,𝝀𝒍) is defined as
follows for 𝑙 ∈ {𝑝, 𝑟}

𝛽𝑙𝑘 =

{

𝜃𝑙𝑘, if 𝑎𝑙𝑘 = 𝜆𝑘,

0, if 𝑎𝑙𝑘 < 𝜆𝑘,
(6)

where 𝜷𝒍 = (𝛽𝑙1,… , 𝛽𝑙𝑓 )𝑇 , 𝜽𝒍 = (𝜃𝑙1,… , 𝜃𝑙𝑓 )𝑇 , 𝒂𝒍 = (𝑎𝑙1,… , 𝑎𝑙𝑓 )𝑇 ,
𝝀𝒍 = (𝜆𝑙1,… , 𝜆𝑙𝑓 )𝑇 , 1 ≤ 𝑘 ≤ 𝑓 with 𝑓 ∈ {𝑠, 𝑡}. Eq. (6) is the spike
value firing function for proportion neurons (when 𝑙 = 𝑝) or rule
neurons (when 𝑙 = 𝑟). It is employed to calculate the output spike
values of corresponding neurons when the neurons fire.

(5) Firing function of spike numbers: 𝒃𝒍 = 𝑓𝑖𝑟𝑒(1,𝒂𝒍,𝝀𝒍) is defined as
follows for 𝑙 ∈ {𝑝, 𝑟}

𝑏𝑙𝑘 =

{

1, if 𝑎𝑙𝑘 = 𝜆𝑘,

0, if 𝑎𝑙𝑘 < 𝜆𝑘,
(7)

where 𝒃𝒍 = (𝑏𝑙1,… , 𝑏𝑙𝑓 )𝑇 , 𝒂𝒍 = (𝑎𝑙1,… , 𝑎𝑙𝑓 )𝑇 , 𝝀𝒍 = (𝜆𝑙1,… , 𝜆𝑙𝑓 )𝑇 ,
1 ≤ 𝑘 ≤ 𝑓 with 𝑓 ∈ {𝑠, 𝑡}. Eq. (7) is the spike number firing
function for proportion neurons (when 𝑙 = 𝑝) or rule neurons
(when 𝑙 = 𝑟). It is employed to calculate the output spike
numbers of corresponding neurons when the neurons fire.

(6) Update function of spike values: 𝜷𝒍 = 𝑢𝑝𝑑𝑎𝑡𝑒(𝜽𝒍,𝒂𝒍,𝝀𝒍) is defined
as follows for 𝑙 ∈ {𝑝, 𝑟}

𝛽𝑙𝑘 =

{

𝛽𝑙𝑘 + 𝜃𝑙𝑘, if 0 < 𝑎𝑙𝑘 < 𝜆𝑙𝑘,

0, if 𝑎𝑙𝑘 = 0 𝑜𝑟 𝑎𝑙𝑘 = 𝜆𝑙𝑘,
(8)

where 𝜷𝒍 = (𝛽𝑙1,… , 𝛽𝑙𝑓 )𝑇 , 𝜽𝒍 = (𝜃𝑙1,… , 𝜃𝑙𝑓 )𝑇 , 𝒂𝒍 = (𝑎𝑙1,… , 𝑎𝑙𝑓 )𝑇 ,
𝝀𝒍 = (𝜆𝑙1,… , 𝜆𝑙𝑓 )𝑇 , 1 ≤ 𝑘 ≤ 𝑓 with 𝑓 ∈ {𝑠, 𝑡}. Eq. (8) is the
update function for the spike values in proportion neurons (when
𝑙 = 𝑝) or rule neurons (when 𝑙 = 𝑟). It is employed to accumulate
the spike values of corresponding neurons when the neurons do
not fire.

(7) Update function of spike numbers: 𝒂 = 𝑢𝑝𝑑𝑎𝑡𝑒(𝒆,𝒂,𝝀) is defined
as follows

𝑎𝑘 =

{

𝑒𝑘 + 𝑎𝑘, if 0 < 𝑎𝑘 < 𝜆𝑘,

0, if 𝑎𝑘 = 0 𝑜𝑟 𝑎𝑘 = 𝜆𝑘,
(9)

where 𝒂 = (𝑎1,… , 𝑎𝑓 )𝑇 , 𝒆 = (𝑒1,… , 𝑒𝑓 )𝑇 , 𝝀𝒍 = (𝜆1,… , 𝜆𝑓 )𝑇 ,
1 ≤ 𝑘 ≤ 𝑓 with 𝑓 ∈ {𝑠, 𝑡}. 𝒆 is a spike number factor representing
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the spike numbers that already exist in the neurons before new
spikes come. Eq. (9) is the update function for the spike numbers
in proportion neurons (when 𝑓 = 𝑠) or rule neurons (when 𝑓 =
𝑡). It is employed to update the spike numbers of corresponding
neurons when the neurons do not fire.

(8) Matrix 𝑼 = 𝑑𝑖𝑎𝑔(𝑏) (order 𝑓 ×𝑓 ): for 1 ≤ 𝑘, 𝑞 ≤ 𝑓 , with 𝑓 ∈ {𝑠, 𝑡}
and matrix elements (𝑢𝑘𝑞)𝑓×𝑓 ,

𝑢𝑘𝑗 =

{

𝑏𝑘, if 𝑘 = 𝑞,

0, if 𝑘 ≠ 𝑞,
(10)

where 𝒃 = (𝑏1,… , 𝑏𝑓 ). Eq. (10) is employed to calculate the
values of elements in the diagonal matrix evolved from the
matrix 𝑏.

In what follows, we give a step-by-step description of the MBRA.

MBRA

INPUT: W𝑝, W𝑟1, W𝑟2, W𝑟3, D1, D2, C, T, 𝝀𝑝, 𝝀𝑟, 𝜽0𝑝, 𝒂0𝑝.
OUTPUT: Fuzzy truth values of output neurons.
Step 1: Set initial values and termination conditions

01 = (0,… , 0)𝑇𝑠 and 02 = (0,… , 0)𝑇𝑡 ;
Step 2: Let 𝜽0𝑟 = (0,… , 0)𝑇𝑡 and 𝒂0𝑟 = (0,… , 0)𝑇𝑡 ;
Step 3: Let 𝑔 = 0;
Step 4: Process proposition neurons and rule neurons as follows:

(1) Process the states of proposition neurons. For each proposition
neuron 𝑝 do the following:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜷𝑔
𝑝 = fire(𝜽𝑔𝑝 ,𝒂

𝑔
𝑝 ,𝝀𝑝)

𝒃𝑔𝑝 = fire(1,𝒂𝑔𝑝 ,𝝀𝑝)

𝜽𝑔𝑝 = update(𝜽𝑔𝑝 ,𝒂
𝑔
𝑝 ,𝝀𝑝)

𝒂𝑔𝑝 = update(𝒂𝑔𝑝 ,𝒂
𝑔
𝑝 ,𝝀𝑝)

𝒃𝑔𝑝 = diag(𝒃𝑔𝑝)

(11)

(2) Compute the spike values 𝜽𝑔+1𝑟 and number of spikes received
𝒂𝑔+1𝑟 for rule neurons. For each rule neuron do the following:

𝜽𝑔+1𝑟 = 𝑾 T
𝑟1 ⊗ [(𝜷𝒈

𝒑 ⊗𝑻 )T] +𝑾 T
𝑟2 ⊗ [(𝜷𝒈

𝒑 ⊗𝑻 )T] +𝑾 T
𝑟3 ⊗ [(𝜷𝒈

𝒑 ⊗𝑻 )T];

(12)

𝒂𝑔+1𝑟 = 𝒂𝑔𝑟 + [(𝒃𝑔𝑝 ⊕𝑫1)T ⊗ 𝒃𝑔𝑝]; (13)

(3) Process the states of rule neurons. For each rule neuron and each
proposition neuron do the following:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜷𝑔+1
𝑟 = fire(𝑪 ⊗ 𝜽𝑔+1𝑟 ,𝒂𝑔+1𝑟 ,𝝀𝑟)

𝒃𝑔+1𝑟 = fire(1,𝒂𝑔+1𝑟 ,𝝀𝑟)

𝜽𝑔+1𝑟 = update(𝜽𝑔+1𝑟 ,𝒂𝑔𝑝 ,𝝀𝑝)

𝒂𝑔+1𝑟 = update(𝒂𝑔+1𝑟 ,𝒂𝑔𝑝 ,𝝀𝑝)

𝒃𝑔+1𝑟 = diag(𝒃𝑔+1𝑟 )

(14)

(4) Compute the spike values 𝜽𝑔+1𝑝 and number of spikes received
𝒂𝑔+1𝑝 for proposition neurons. For each rule neuron and each
proposition neuron do the following:

𝜽𝑔+1𝑝 = 𝑾 T
𝑝 ⊙ 𝜷𝒈+𝟏

𝒓 ; (15)

𝒂𝑔+1𝑝 = 𝒂𝑔𝑝 + [(𝑫2 ⊕ 𝑩𝑔+1
𝑟 )⊗ 𝒃𝑔+1𝑟 ; (16)

Step 5: If the termination conditions are satisfied, that is, 𝜽𝑔+1𝑝 = 𝟎1
and 𝜽𝑔+1𝑟 = 𝟎2, then halt and export reasoning results, i.e., the fuzzy
truth values of output neurons. Otherwise, 𝑔 = 𝑔 + 1 and go to Step 4.

3. FD-WCFRSNPS

In this section, we propose a graphical modeling approach, called
FD-WCFRSNPS, for diagnosing power system faults using rWCFRSNPSs.
First, we model fuzzy production rules based on rWCFRSNPSs, and
then we design layered fault diagnosis models for equipment such as
transmission lines, buses and transformers. Next, we adapt the method
to process temporal order information. Finally, the FD-WCFRSNPS is
algorithmically illustrated.

3.1. Models for fuzzy production rules

When diagnosing power system faults, the fault knowledge (alarm
messages) is usually expressed as fuzzy production rules. In general,
four types of rules are considered for fault diagnosis. In order to model
them, we need to map them onto rWCFRSNPSs, as shown in Fig. 4. The
rules and associated models can be described as follows.

𝑇 𝑦𝑝𝑒 1 (𝑆𝑖𝑚𝑝𝑙𝑒 𝑅𝑢𝑙𝑒𝑠) 𝑅𝑖 (CF = 𝑐𝑖): IF 𝑝𝑗 (𝜃𝑗 ) THEN 𝑝𝑘(𝜃𝑘). The corre-
sponding rWCFRSNPS is shown in Fig. 4(a), where 𝑝𝑗 and 𝑝𝑘 represent
the rule’s antecedent and consequent propositions, respectively, 𝑐𝑖 is a
real number in [0, 1] representing the rule’s certainty factor, and 𝜃𝑗 and
𝜃𝑘 are real numbers in [0, 1] representing the truth values of 𝑝𝑗 and 𝑝𝑘,
respectively. The weight of proposition 𝑝𝑗 is 𝜔𝑗 , where 𝜔𝑗 = 1 because
there is only one antecedent proposition, and 𝑡𝑗 is the information
correction parameter (either 0 or 1) of the proposition neuron 𝜎𝑗 . Thus,
the truth value of 𝑝𝑘 is 𝜃𝑘 = 𝜃𝑗 ∗ 𝑡𝑗 ∗ 𝜔𝑗 ∗ 𝑐𝑖 = 𝜃𝑗 ∗ 𝑡𝑗 ∗ 𝑐𝑖.

𝑇 𝑦𝑝𝑒 2 (𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝐴𝑛𝑑 𝑅𝑢𝑙𝑒𝑠) (CF = 𝑐𝑖) 𝑅𝑖: IF 𝑝1(𝜃1) AND … AND
𝑝𝑘−1(𝜃𝑘−1) THEN 𝑝𝑘 (𝜃𝑘). The corresponding rWCFRSNPS is shown
in Fig. 4(b), where 𝑝1,… , 𝑝𝑘−1 and 𝑝𝑘 represent the rule’s antecedent
and consequent propositions, respectively, 𝑐𝑖 is a real number in [0,
1] representing the rule’s certainty factor, and 𝜃1,… , 𝜃𝑘 are real num-
bers in [0, 1] representing the truth values of propositions 𝑝1,… , 𝑝𝑘,
respectively. The weights of propositions 𝑝1,… , 𝑝𝑘−1 are 𝜔1,… , 𝜔𝑘−1,
respectively, and 𝑡1,… , 𝑡𝑘−1 are information correction parameters (either
0 or 1) for the proposition neurons 𝜎1,… , 𝜎𝑘−1. Thus, the truth value
of 𝑝𝑘 is 𝜃𝑘 = 𝑚𝑖𝑛{𝜃1 ∗ 𝑡1 ∗ 𝜔1,… , 𝜃𝑘−1 ∗ 𝑡𝑘−1 ∗ 𝜔𝑘−1} ∗ 𝑐𝑖.

𝑇 𝑦𝑝𝑒 3 (𝐶𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝐴𝑛𝑑 𝑅𝑢𝑙𝑒𝑠) (CF = 𝑐𝑖) 𝑅𝑖: IF 𝑝1(𝜃1) THEN 𝑝2(𝜃2)
AND … AND 𝑝𝑘 (𝜃𝑘). The corresponding rWCFRSNPS is shown in
Fig. 4(c), where 𝑝1 and 𝑝2,…, 𝑝𝑘 represent the rule’s antecedent and
consequent propositions, 𝑐𝑖 is a real number in [0, 1] representing
the rules’ certainty factor, and 𝜃1,… , 𝜃𝑘 are real numbers in [0, 1]
representing the truth values of propositions 𝑝1,… , 𝑝𝑘, respectively.
The weight of proposition 𝑝1 is 𝜔1, where 𝜔1 = 1 because there is
only one antecedent proposition, and 𝑡1 is the information correction
parameter (either 0 or 1) for proposition neuron 𝜎1. This type of rule
can be split into 𝑘− 1 simple rules, so the truth values of 𝑝2,… , 𝑝𝑘 are
𝜃2 = ⋯ = 𝜃𝑘 = 𝜃1 ∗ 𝑡1 ∗ 𝜔1 ∗ 𝑐𝑖 = 𝜃1 ∗ 𝑡1 ∗ 𝑐𝑖.

𝑇 𝑦𝑝𝑒 4 (𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑂𝑟 𝑅𝑢𝑙𝑒𝑠) (CF = 𝑐𝑖) 𝑅𝑖: IF 𝑝1(𝜃1) OR … OR
𝑝𝑘−1(𝜃𝑘−1) THEN 𝑝𝑘 (𝜃𝑘). The corresponding rWCFRSNPS is shown
in Fig. 4(d), where 𝑝1,… , 𝑝𝑘−1 and 𝑝𝑘 represent the rule’s antecedent
and consequent propositions, respectively, 𝑐𝑖 is a real number in [0, 1]
representing the rule’s certainty factor, and 𝜃1,… , 𝜃𝑘 are real numbers
in [0, 1] representing the truth values of the propositions 𝑝1,… , 𝑝𝑘,
respectively. The weights of propositions 𝑝1,… , 𝑝𝑘−1 are 𝜔1,… , 𝜔𝑘−1,
respectively, and 𝑡1,… , 𝑡𝑘−1 are information correction parameters (either
0 or 1) for the proposition neurons 𝜎1,… , 𝜎𝑘−1. Thus, the truth value
of 𝑝𝑘 is 𝜃𝑘 = 𝑚𝑎𝑥{𝜃1 ∗ 𝑡1 ∗ 𝜔1,… , 𝜃𝑘−1 ∗ 𝑡𝑘−1 ∗ 𝜔𝑘−1} ∗ 𝑐𝑖.
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Fig. 4. rWCFRSNPSs for fuzzy production rules of (a) Type 1, (b) Type 2, (c) Type 3 and (d) Type 4.

3.2. Layered fault diagnosis models and parameter values

Here, we first propose layered fault diagnosis models based on
rWCFRSNPSs for power system equipment such as transmission lines,
buses and transformers. Then, we give adaptive adjustment rules to
enable these models to adapt to changes in power system topology.
Finally, suitable parameter values are discussed for the models.

3.2.1. Layered models based on rWCFRSNPSs
The fuzzy production rules discussed above can be used to de-

scribe the logical relationships between the information from protective
devices and faults. We employ rWCFRSNPSs to model these rules,
representing and reasoning about fault knowledge to find power system
faults.

To improve the ability of SNPS-based fault diagnosis models to
adapt to system topological changes, we propose layered fault diag-
nosis models based on rWCFRSNPSs for transmission lines, buses and
transformers, as follows.

(1) Transmission lines
Because transmission lines include protective relays at both the

sending and receiving ends, our fault diagnosis models for them should
include separate submodels for both the sending and receiving ends.
Given the way that protective relays operate, our models should also
include one that integrates both ends, as well as sending end protection
submodels including main, primary backup and secondary backup
protection submodels, and similar submodels for the receiving end.

Fig. 5 illustrates the complete transmission line model. Here 𝜎1,… ,
𝜎21 represent neurons, where 𝜎𝑖 (𝑖 ≠ 4, 8, 12, 17, 21) are proposition
neurons, and 𝜎4, 𝜎8, 𝜎12, 𝜎17 and 𝜎21 are rule neurons. In addition,
𝜔1,… , 𝜔16 are output weights, 𝑅1,… , 𝑅5 are fuzzy production rules
representing the relationships between the protective device informa-
tion and line faults, and 𝑐1,… , 𝑐5 are the rule’s certainty factors. Next,
𝐿𝑆(𝑅)𝑚, 𝐿𝑆(𝑅)𝑝 and 𝐿𝑆(𝑅)𝑠 are the main, primary backup and secondary
backup protective relays at the sending (or receiving) end, respectively;
𝐶𝐵𝑠 are the circuit breakers for the protective relays; 𝐿𝑆(𝑅)1, 𝐿𝑆(𝑅)2 and
𝐿𝑆(𝑅)3 are the main, primary backup and secondary backup protective
protections at the sending (or receiving) end, respectively; and 𝐿𝑆

and 𝐿𝑅 are protections at the sending and receiving end, respectively.
Note that, here, ‘‘protections’’ represent the protective relays and their
corresponding circuit breakers in our models for transmission lines,
buses and transformers.

(2) Buses
For the bus fault diagnosis model, we create submodels for each

exit. Given the way their protective relays operate, our model should
include 𝑓 submodels (one for each exit), and an integrated model.

Fig. 6 illustrates the bus fault diagnosis model. Here, 𝜎1,… , 𝜎15
are neurons, where 𝜎𝑖 (𝑖 ≠ 8, 9, 10, 15) are proposition neurons, and
𝜎8, 𝜎9, 𝜎10 and 𝜎15 are rule neurons. In addition, 𝜔1,… , 𝜔13 are output
weights, 𝑅1,… , 𝑅4 are fuzzy production rules representing the rela-
tionships between the protective device information and bus faults,
and 𝑐1,… , 𝑐4 are the rule’s certainty factors. Next, 𝐵𝑚 and 𝐵𝑠1(2,3) are
the main and backup protective relays for the exit 1 (or 2, 3), 𝐶𝐵𝑠
represent the circuit breakers for the protective relays, and 𝐵1 (2, 3) is
the protection system, including main and backup protections for the
exit 1 (or 2, 3). The model shown in Fig. 6 includes three submodels
(i.e., 𝑓 = 3), because we have assumed that the bus has three exits. Note
that, in practice, the number of submodels should match the actual
number of exits.

(3) Transformers
Given the way transformers’ protective relays operate, our fault

diagnosis model for a transformer should include main, primary backup
and secondary backup protection submodels, and an integrated sub-
model. In addition, the secondary backup submodel should include
separate submodels for both the sending and receiving ends.

Fig. 7 illustrates the transformer fault diagnosis model. Here, 𝜎1,… ,
𝜎21 represent neurons, where 𝜎𝑖 (𝑖 ≠ 4, 8, 12, 16, 21) are proposition neu-
rons, and 𝜎4, 𝜎8, 𝜎12, 𝜎16 and 𝜎21 are rule neurons. In addition, 𝜔1,… , 𝜔16
are output weights, 𝑅1,… , 𝑅5 are fuzzy production rules representing
the relationships between the protective device information and trans-
former faults, and 𝑐1,… , 𝑐5 represent the rule’s certainty factors. Next,
𝑇𝑚, 𝑇𝑝 and 𝑇𝑆(𝑅)𝑠 are the main, primary backup, and secondary backup
relays at the sending (or receiving) end, respectively, 𝐶𝐵𝑠 represent
the circuit breakers for these relays, and 𝑇1, 𝑇2 and 𝑇3(4) are the main,
primary backup, and secondary backup protection at the sending (or
receiving) end, respectively.
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Fig. 5. Illustration of the layered fault diagnosis model for transmission lines, showing the (a) main, (b) primary backup, and (c) secondary backup protection submodels for
sending (receiving) ends, as well as (d) sending (receiving) end submodels and (e) integrated model combining both ends.

Fig. 6. Illustration of the layered fault diagnosis model for buses. (a) Submodels for the three exits, (b) integrated model.

3.2.2. Adaptive adjustment rules
From Section 3.2.1, we know that our layered models all con-

sist of several submodels. Thus, when the power system’s topology
changes, we do not need to build a complete new diagnosis model, but
just modify the submodels associated with the changes. When doing
this, transmission lines, buses and transformers have different patterns,
which are described below.

Our fault diagnosis models for transmission lines and transformers
include nine and six submodels, respectively. Given the way their

protective devices operate and the way the models are built, when
the power system topology changes, all we need to do in either case
is to add or remove the corresponding branches to/from the sending
(receiving) end secondary backup protection submodels, not rebuild
the whole model. This shows that these layered models are remarkably
adaptable to topological changes.

The bus model includes 𝑓 + 1 submodels, one for each of the 𝑓
exits and one integrated submodel. The exit submodels only involve
the protective devices associated with the relevant exit. Thus, there are
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Fig. 7. Illustration of the layered fault diagnosis model for a transformer, showing the (a) main, (b) primary backup, (c) secondary backup [sending (receiving) end], and (d)
secondary backup (integrated) protection submodels, and the (e) integrated submodel.

different cases to consider in the event of power system topological
changes. If the change affects the secondary backup protection for
a certain exit, then we need to add (or remove) the corresponding
branches to (or from) the corresponding secondary backup protection
submodel. If, on the other hand, the exits change, then we just need to
add or remove submodels corresponding to the exits. Again, we do not
need to rebuild the whole diagnosis model, showing that the layered
model for buses is also highly adaptable to topological changes.

3.2.3. Parameter values
We use the protective device information obtained from the SCADA

system as the inputs of layered fault diagnosis models, but these data
is usually incomplete and uncertain because of malfunctions, device
failures or the information corruption. Thus, to make the input data
more reliable, we need to set a probability value for each protective
device, representing our confidence in its reliability. Table 1 in the
Appendix shows the protective device confidence levels, both when

they are operational and when they are not, where 𝐿, 𝐵 and 𝑇 represent
transmission lines, buses and transformers, respectively. The data in
Table 1 is obtained according to the historical statistics of operating
statuses of the corresponding protective devices.

Initially, each input neuron only contains one spike, which is a real
number in [0, 1]) equaling to the confidence level of its associated
protective device. The other neurons do not initially contain any spikes,
and hence, their potential values are zero.

Each rule neuron has a truth value representing the associated fuzzy
production rule’s certainty factor. Usually, the main protective devices
are more reliable than the primary backups, which are in turn more
reliable than the secondary backups. Thus, on the basis of statistics and
expert knowledge, we set the truth values of neurons associated with
the main, primary backup and secondary backup protective devices to
0.975, 0.95 and 0.9, respectively. Note that the truth values of the
or rule neurons are set according to their highest protection level. For
example, in Fig. 5, the truth values of 𝜎4, 𝜎8, 𝜎12, 𝜎17 and 𝜎21 are 0.975,
0.95, 0.9, 0.975 and 0.975, respectively.

For fuzzy production rules, different antecedent propositions have
different effects on the consequent propositions, so different propo-
sition neurons (which correspond to antecedent propositions) have

different effects on the diagnosis results. We therefore need to set differ-
ent output weights for each synapse. Given the way protective devices
operate, as discussed in Ref. Wang et al. (2015e), we know that when
a piece of equipment fails, protective relays trip the corresponding CBs
and isolate the fault, indicating that both the protective relays and
CBs are very important to handling faults. We therefore set the output
weights of proposition neurons corresponding to protective relays to
0.98, those corresponding to circuit breakers to 0.95, and all other
output weights to 1. For example, the weights 𝜔1,… , 𝜔16 in Fig. 5
are 0.98, 0.95, 1, 0.98, 0.95, 1, 0.98, 0.95, 1, 1, 1, 1, 1, 1, 1 and 1,
respectively.

The firing threshold of each neuron should be smaller than the
minimum pulse value it receives during the reasoning process. On
the basis of Table 1 in the Appendix and the expert knowledge,
to guarantee logical fault knowledge reasoning, we set all the firing
thresholds to 0.1. It is worth noting that the above truth values of rule
neurons, and the output weights and firing thresholds of neurons are
set according to expertise.

3.3. Processing temporal order information

Here, we first discuss the temporal order characteristics of SCADA
system alarm messages and then present a Temporal Order Information
Processing Method based on Cause–Effect Networks (TOIPM-CEN). Fi-
nally, a simple power network is used to discuss the TOIPM-CEN in
detail.

3.3.1. Temporal relationships among alarm messages
When faults occur in power systems, many SCADA system alarm

messages pour into the control center in a short period of time. These
messages give both the event and temporal relationships between the
protective relays and CBs. The relationships between the protective
relay and CB tripping events are usually used to diagnose power
system faults, whereas the temporal relationships (i.e., the fact that the
corresponding protective relays and CBs should trip within a specific
time window after the failure) are important for analyzing the causes
of complex faults, fault evolution and protective device behavior. Thus,
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Fig. 8. Simple CEN for the conditional implication rule 𝑅 {𝑐 (𝐴, 𝐵) } ∶ 𝐴 → 𝐵.

we could potentially improve diagnosis accuracy by using the temporal
relationships between the alarm messages together with the event
relationships in the reasoning process. With that in mind, we now
consider the temporal relationships between the alarm messages.

When the protective devices operate is determined by both the
time delays set for them and the time it takes the protective relays
to trip. Specifically, if a fault occurs at time 𝜏0, then the trip time
𝜏𝑎 ∈ [𝜏0 + 𝜏 + 𝜏𝑚𝑖𝑛𝑝 , 𝜏0 + 𝜏 + 𝜏𝑚𝑎𝑥𝑝 ], where 𝜏 is the time delay set for
the protective device, 𝜏𝑝 ∈ [𝜏𝑚𝑖𝑛𝑝 , 𝜏𝑚𝑎𝑥𝑝 ] is the time taken for the relays
to trip, and 𝜏𝑚𝑖𝑛𝑝 and 𝜏𝑚𝑎𝑥𝑝 are the upper bound and lower bound of
𝜏𝑝, respectively. The time delays for the main, primary backup and
secondary backup protective systems relative to the failure time are
different, at 𝜏𝑝 are [10, 40] ms, [310, 340] ms and [510, 450] ms,
respectively.

Then, at a signal from a protective relay, the corresponding CBs trip.
Thus, the time at which they trip is chiefly determined by the time they
take to respond to this signal. If a protective relay trips at time 𝜏𝑎 and
then the CBs trip after a delay of 𝜏𝑐 (𝜏𝑐 ∈ [𝜏𝑚𝑖𝑛𝑐 , 𝜏𝑚𝑎𝑥𝑐 ]), then this should
occur in the window [𝜏𝑎+𝜏𝑚𝑖𝑛𝑐 , 𝜏𝑎+𝜏𝑚𝑎𝑥𝑐 ], where 𝜏𝑚𝑖𝑛𝑐 and 𝜏𝑚𝑎𝑥𝑐 represent
the upper bound and lower bound of 𝜏𝑐 , respectively. The delay ranges
for the CBs corresponding to the main, primary backup and secondary
backup relays are all the same, at [20, 40] ms.

3.3.2. TOIPM-CEN
TOIPM-CENs process temporal order information by using CENs and

conditional implication rules in an innovative way to represent the
logical relationships between a faulty equipment and the corresponding
protective devices (including protective relays and CBs), and to depict
the causal relationships between nodes. They thus correct the SCADA
system alarm messages using both the temporal order information and
their conditional implication rules to obtain the information correction
parameter matrix 𝑇 of alarm messages. Before discussing TOIPM-CENs
in detail, we must first introduce some of the concepts involved,
including event nodes, time constraint relationships between event nodes,
and conditional implication rules.

TOIPM-CENs include five types of event nodes, which indicate equip-
ment faults, protective relay activates, circuit breaker trips, protective relay
fails to activate, and circuit breaker fails to trip, respectively. These are
formally represented as follows: 𝐶𝑓𝑎𝑢𝑙𝑡(𝑒, 𝜏) represents component 𝑒
failing at time 𝜏; 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝑝, 𝜏) indicates protective relay 𝑝 activating at
time 𝜏; 𝐶𝑡𝑟𝑖𝑝(𝑐, 𝜏) represents circuit breaker 𝑐 tripping at time 𝜏; 𝐶𝑟𝑒𝑗𝑒𝑐𝑡(𝑝)
indicates protective relay 𝑝 failing to trip at time 𝜏; and 𝐶𝑟𝑒𝑗𝑒𝑐𝑡(𝑐)
represents circuit breaker 𝑐 failing to trip at time 𝜏.

TOIPM-CENs represent time constraint relationships between event
nodes formally by 𝜙−(𝜏1, 𝜏2, 𝜏𝑎, 𝜏𝑏) or 𝜙+(𝜏1, 𝜏2, 𝜏𝑎, 𝜏𝑏), where 𝜏𝑎 ≤ 𝜏2 −
𝜏1 ≤ 𝜏𝑏. Here, 𝜏1 and 𝜏2 indicate when even nodes 1 and 2 occur,
respectively, whereas 𝜏𝑎 and 𝜏𝑏 represent the upper and lower bounds,
respectively, on the delay between the two events. In addition, 𝜙−

means that event 1 occurred before event 2, whereas 𝜙+ means that
event 2 occurred first. Conditional implication rules are represented by
𝑅 {𝑐 (𝐴, 𝐵) } ∶ 𝐴 → 𝐵, where 𝐴 and 𝐵 are cause and result event nodes,
respectively, and 𝑐(𝐴,𝐵) represents a constraint condition between 𝐴
and 𝐵. This rule can be described by the simple CEN shown in Fig. 8.

To illustrate how a TOIPM-CEN corrects alarm messages, we now
consider the simple power system, as shown in Fig. 9, where 𝐿1𝑆𝑚 and
𝐿1𝑅𝑚 are the sending end and receiving end main protectors of line 𝐿,
respectively, 𝐿1𝑆𝑝 and 𝐿1𝑅𝑝 are corresponding backup protectors, and
𝐶𝐵1 and 𝐶𝐵2 are the associated circuit breakers. The TOIPM-CEN is
constructed as follows.

Fig. 9. Simple example power system.

Fig. 10. CEN for the simple power system shown in Fig. 9.

Firstly, we build the CEN shown in Fig. 10 to model the logical
relationships between faulty equipment and alarm messages, where
𝐶0,… , 𝐶6 represent a sequence of seven event nodes, namely, 𝐿1
develops a fault, 𝐿1𝑆𝑚 activates, 𝐿1𝑅𝑚 activates, 𝐶𝐵1 trips, 𝐶𝐵2 trips,
𝐿1𝑆𝑃 activates and 𝐿1𝑅𝑃 activates, respectively. A solid arrow between
𝐶𝑖 and 𝐶𝑗 means that there is only a time constraint between the
two nodes, whereas a dotted arrow indicates that there are also other
types of relationships between the two nodes. Here, 𝜏0,… , 𝜏6 represent
times that 𝐶0,… , 𝐶6 occur, respectively, and the 𝑐(𝐶𝑖, 𝐶𝑗 )(0 ≤ 𝑖, 𝑗 ≤
6, 𝑖 ≠ 𝑗) represents the constraint conditions between events 𝐶𝑖 and
𝐶𝑗 . The formal representations of the seven event nodes 𝐶0,… , 𝐶6 are
shown in Table 2 in the Appendix, and the constraint relationships
corresponding to the conditions 𝑐(𝐶𝑖, 𝐶𝑗 )(0 ≤ 𝑖, 𝑗 ≤ 6, 𝑖 ≠ 𝑗) are given in
Table 3, where 𝜑(𝐶𝑖, 𝐶𝑗 ) = 𝐶𝑖 ∩ 𝐶𝑗 (𝑖 = 0, 𝑗 = 1, 2) indicates that event
𝐶𝑖 occurred, but 𝐶𝑗 did not. For instance, 𝜑(𝐶0, 𝐶1) means that line 𝐿1
developed a fault but protective relay 𝐿1𝑆𝑚 failed to trip.

On the basis of the temporal relationships presented in Section 3.3.1
for alarm messages and ideas discussed in this section, we can derive
the conditional implication rule set for the CEN shown in Fig. 10,
which is shown in Table 4 in the Appendix. The alarm messages
can then be corrected using these implication rules obtained and the
temporal relationships. Imagine, for example, that we received the
alarm messages, i.e., 𝐶𝐵1(76 ms) and 𝐿1𝑆𝑚(45 ms), from the SCADA
system, indicating that the circuit breaker 𝐶𝐵1 tripped at 𝜏3 = 76 ms
and protective relay 𝐿1𝑆𝑚 activated at 𝜏1 = 45 ms. Then, according to
the temporal relationships, the constraints shown in Table 3 and Rule
5 in Table 4, we find that 𝜏3 − 𝜏1 = 76 − 45 = 31 ms, meaning that
20 ms ≤ 𝜏3 − 𝜏1 ≤ 40 ms. Thus, 𝐶𝐵1 tripped correctly, so we set its
information correction parameter to 1.

3.4. FD-WCFRSNPS

Now, we summarize our rWCFRSNPS-based fault diagnosis method
(FD-WCFRSNPS), which involves the following main steps.

Step 1: Read all fault alarm messages about protective devices from
the SCADA system;
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Fig. 11. Overview of a local subsystem of a 220 kV power system.

Step 2: Search for areas with faults. We use a network topology-
based analysis method (Wang et al., 2015e; Prais and Bose, 1988) to
reduce the number of areas to consider, reducing the computational
workload;

Step 3: If there is only one piece of equipment in the areas found in
Step 2, then it must be faulty and the algorithm terminates. Otherwise,
all equipment in these areas may potentially be faulty, so we create a
layered fault diagnosis model based on rWCFRSNPSs for each piece of
potentially faulty equipment, as described in Section 3.2.1;

Step 4: Correct and update alarm messages using their temporal
relationships and the TOIPM-CEN proposed in Section 3.3.2. Then,
obtain the information correction parameter matrix 𝑇 for each model;

Step 5: Reason about fault, using the MBRA proposed in Section 2.2
to acquire the fault confidence level 𝜃 for each potentially faulty piece
of equipment;

Step 6: Find the faulty equipment. A given piece of equipment is
faulty if its confidence level 𝜃 ≥ 0.5; otherwise, it is not.

4. Case study

In this section, we test the effectiveness of the FD-WCFRSNPS by
considering a local subsystem of a 220 kV power system, previously
discussed in Refs. Wen and Han (1995) and Sun et al. (2004), as
illustrated in Fig. 11. The system includes 28 pieces of equipment, 84
protective relays and 40 circuit breakers.

The 28 pieces of equipment (𝑆1 ∼ 𝑆28) are labeled as 𝐴1,… , 𝐴4, 𝑇1,
… , 𝑇8, 𝐵1,… , 𝐵8 and 𝐿1, … , 𝐿8. The 84 protective relays consist of
36 main relays (𝑟1 ∼ 𝑟36), labeled as 𝐴1𝑚,…, 𝐴4𝑚, 𝑇1𝑚, …, 𝑇8𝑚, 𝐵1𝑚,
…, 𝐵8𝑚, 𝐿1𝑆𝑚, …, 𝐿8𝑆𝑚 and 𝐿1𝑅𝑚, … , 𝐿8𝑅𝑚, and 48 backup relays
(𝑟37 ∼ 𝑟84), labeled as 𝑇1𝑝, …, 𝑇8𝑃 , 𝑇1𝑠,…, 𝑇8𝑠, 𝐿1𝑆𝑝, …, 𝐿8𝑆𝑝, 𝐿1𝑅𝑝, …,
𝐿8𝑅𝑝, 𝐿1𝑆𝑠, … , 𝐿8𝑆𝑠 and 𝐿1𝑅𝑠, … , 𝐿8𝑅𝑠. Here, 𝐴, 𝐵, 𝑇 and 𝐿 represent
single buses, double buses, transformers and lines, respectively; 𝑆 and
𝑅 represent the line’s sending and receiving ends, respectively; and 𝑚, 𝑝
and 𝑠 denote the main, primary backup and second backup protective
systems, respectively. The 40 circuit breakers (𝐶1 ∼ 𝐶40) are labeled
as 𝐶𝐵1,… , 𝐶𝐵40. The protective devices operate as described in Wang
et al. (2015e) and Wen and Han (1995).

Using this system, we consider the five cases shown in Table 5 in
the Appendix as examples. In addition, we compare diagnosis results of

the FD-WCFRSNPS with those of a Analytic Model (AM) (Zhang et al.,
2016), a Fuzzy Petri Net (FPN) (Sun et al., 2004), the rFRSNPS (Peng
et al., 2013) and the ivFRSNPS (Wang et al., 2019a) as shown in
Table 6 in the Appendix. Table 6 shows that Cases 1 and 2 do not
contain uncertain and incomplete alarm messages. So, all the five
methods produce the right diagnosis results. In Case 3, the 𝐶𝐵6 and
𝐶𝐵10 refused to work. Since the five methods have the uncertainty
handling ability, they all find the right faulty equipment. In Case 4, the
𝐶𝐵6 refused to work and the failure protection 𝐶𝐵6𝑓 started to protect
the power system. Besides, the time stamp information of the 𝐶𝐵9 was
false. In Case 5, the 𝐿2𝑆𝑚 was lost and the 𝐶𝐵10 was a wrong action.
So, we can see that the Cases 4–5 are multiple faults with complex
uncertainty in the fault information. Therefore, for Cases 4–5, only
the proposed FD-WCFRSNPS and the AM can diagnose the right faults
because they correct the wrong fault alarm messages before reasoning
or optimization to reduce the uncertain degree of the fault information,
which improves their fault tolerance.

To illustrate the steps taken by the FD-WCFRSNPS for this system,
we now work through Case 3 as an example.

Case 3: Fault alarm messages: 𝐵1𝑚, 𝐿2𝑅𝑠 and 𝐿4𝑅𝑠 activated; 𝐶𝐵4,
𝐶𝐵5, 𝐶𝐵7, 𝐶𝐵9, 𝐶𝐵12 and 𝐶𝐵27 tripped. The fault diagnosis algorithm
of the FD-WCFRSNPS proceeds as follows.

Step 1: Read above fault alarm messages from the SCADA system.
Step 2: Search for outage areas. Use a network topology-based anal-

ysis method to find the set of potentially faulty equipment: {𝐵1, 𝐵2, 𝐵3,
𝐵4}.

Step 3: Because Step 2 found more than one piece of potentially
faulty equipment, build a layered fault diagnosis model for each piece
of equipment in the set. Here, taking bus 𝐵1 as an example, the
corresponding model is shown in Fig. 12, where Fig. 12(e) and (f) give
the submodels built for the bus tie switch 𝐶𝐵6.

Step 4: Process the alarm messages and then obtain the matrix 𝑇
for each model. Here, we show how the proposed TOIPM-CEN uses
temporal order information to process the alarm messages, taking bus
𝐵1 as an example.

(1) Describe the logical relationships between 𝐵1 failing and the
protective devices sending out alarm messages using the CEN shown in
Fig. 13. Here, 𝐶0,… , 𝐶17 represent 18 event nodes, whose formal
representations are shown in Table 7 in the Appendix, where 𝐵𝐹
represents a protection failure.
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Fig. 12. The layered fault diagnosis model for bus 𝐵1, showing the submodels for exits on (a) 𝑇1, (b) 𝑇2, (c) 𝐿1, (d) 𝐿2, (e) 𝐿3 and (f) 𝐿4; and the (g) integrated model.

(2) Derive the conditional implication rule set for the CEN shown
in Fig. 13, as shown in Table 8 in the Appendix.

(3) On the basis of the temporal relationships and the rule set shown
in Table 8, we find that 𝐶𝐵6 failed to trip, but the rest of the protective
devices worked correctly.

(4) Obtain the information correction parameter matrix 𝑇 for each
model built in Step 3. Here, we take the model for 𝐵1 (shown in Fig. 12)
as an example. This model includes seven submodels, whose informa-
tion correction parameter matrices are as follows: 𝐓1 = 𝑑𝑖𝑎𝑔(1, 1, 1, 0, 0,
0); 𝐓2 = 𝑑𝑖𝑎𝑔(1, 1, 1, 0, 0, 0); 𝐓3 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1, 0, 0, 0); 𝐓4 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1,
0, 0, 0); 𝐓5 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1, 0, 0, 0); 𝐓6 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1, 0, 0, 0); and 𝐓7 =
𝑑𝑖𝑎𝑔(1, 1, 1, 1, 1, 1, 0).

Step 5: Apply the MBRA to each fault diagnosis model to calculate
the fault confidence level for each piece of potentially faulty equipment.
Again, we consider bus 𝐵1 as an example and apply the MBRA to each
of the submodels in Fig. 12(a)–(f) in parallel. We have to consider the
integrated model (Fig. 12(g)) after the other six submodels because
it takes their outputs as inputs. Next, we describe how the MBRA
acquires the fault confidence levels for each piece of equipment, using
the submodel on exit 𝑇1. The parameter matrices for the submodel are
as follows:

𝐖𝑝 =
⎡

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎦

, 𝐖𝑟1 = [𝐎]6×3,

𝐖𝑟2 =
⎡

⎢

⎢

⎣

0.98 0.95 0 0 0 0
0 0.95 0.98 0 0 0
0 0 0 0 0 0

⎤

⎥

⎥

⎦

𝑇

,

𝐖𝑟3 =
⎡

⎢

⎢

⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0

⎤

⎥

⎥

⎦

𝑇

, 𝐃1 =
⎡

⎢

⎢

⎣

1 1 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1

⎤

⎥

⎥

⎦

𝑇

,

𝐃2 =
⎡

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎦

,

𝐂 = 𝑑𝑖𝑎𝑔(0.975, 0.9, 0.975), 𝐓1 = 𝑑𝑖𝑎𝑔(1, 1, 1, 0, 0, 0),

λ𝑝 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1)𝑇 ,

θ0𝑝 = (0.8504, 0.9833, 0.7, 0, 0, 0)𝑇 , 𝐚0𝑝 = (1, 1, 1, 0, 0, 0)𝑇 .

When 𝑔 = 0, we obtain the reasoning results: 𝜽1𝑟 = (0.8334, 0.686, 0)𝑇

and 𝜽1𝑝 = (0, 0, 0, 0.8127, 0.6174, 0)𝑇 . Then, when 𝑔 = 1, we obtain 𝜽2𝑟
= (0, 0, 0.8127)𝑇 and 𝜽2𝑝 = (0, 0, 0, 0, 0, 0.7924)𝑇 , and for 𝑔 = 2, we obtain
𝜽3𝑟 = (0, 0, 0)𝑇 and 𝜽3𝑝 = (0, 0, 0, 0, 0, 0)𝑇 . At this point (𝑔 = 2) the MBRA’s
termination condition is satisfied and reasoning ends. Output neuron 𝜎6
in Fig. 12(a) then yields its potential value, namely, 0.7924. This means
that the faulty confidence level of a fault in 𝐵1 on exit 𝑇1 is 0.7924.

Similarly, we obtain the fault confidence levels of a fault in 𝐵1 on
exits 𝑇2, 𝐿1, 𝐿2, 𝐿3 and 𝐿4, namely, 0.7924, 0.7924, 0.6252 , 0.7924
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Table 1
Operation and no-operation confidence levels of the protective devices.

Equipments Protective devices (operation) Protective devices (no-operation)

Main First backup Second backup Main First backup Second backup

Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs

L 0.9913 0.9833 0.8 0.85 0.7 0.75 0.2 0.2 0.2 0.2 0.2 0.2
B 0.8564 0.9833 – – 0.7 0.75 0.4 0.2 – – 0.4 0.2
T 0.7756 0.9833 0.75 0.8 0.7 0.75 0.4 0.2 0.4 0.2 0.4 0.2

Table 2
The formal representation of node events 𝐶0 to 𝐶6.

Symbol Formal representation Symbol Formal representation

𝐶0 𝐶𝑓𝑎𝑢𝑙𝑡(𝐿1 , 𝜏0) 𝐶4 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵2 , 𝜏4)
𝐶1 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑆𝑚 , 𝜏1) 𝐶5 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑆𝑝 , 𝜏5)
𝐶2 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑚 , 𝜏2) 𝐶6 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑝 , 𝜏6)
𝐶3 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵1 , 𝜏3) – –

Table 3
The implications of the constraint conditions.

Symbol Implication Symbol Implication

c(C0,C1) 𝜙−(𝜏0 , 𝜏1 , 10 ms, 40 ms) c(C1,C3) 𝜙−(𝜏1 , 𝜏3 , 20 ms, 40 ms)
c(C0,C2) 𝜙−(𝜏0 , 𝜏2 , 10 ms, 40 ms) c(C2,C4) 𝜙−(𝜏2 , 𝜏4 , 20 ms, 40 ms)
c(C0,C5) 𝜙−(𝜏0 , 𝜏5 , 310 ms, 340 ms), 𝜑(𝐶0 , 𝐶1) c(C5,C3) 𝜙−(𝜏5 , 𝜏3 , 20 ms, 40 ms)
c(C0,C6) 𝜙−(𝜏0 , 𝜏6 , 310 ms, 340 ms), 𝜑(𝐶0 , 𝐶2) c(C6,C4) 𝜙−(𝜏6 , 𝜏4 , 20 ms, 40 ms)

Table 4
Implication rule set with conditional constraint for the CNE in Fig. 4.

Number Rule

1 𝑅1{𝜙−(𝜏0 , 𝜏1 , 10 ms, 40 ms)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐿1 , 𝜏0)→𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑆𝑚 , 𝜏1)
2 𝑅2{𝜙−(𝜏0 , 𝜏2 , 10 ms, 40 ms)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐿1 , 𝜏0)→𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑚 , 𝜏2)
3 𝑅3{𝜙−(𝜏0 , 𝜏5 , 310 ms, 340 ms), 𝜑(𝐶0 , 𝐶1)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐿1 , 𝜏0)→𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑆𝑝 , 𝜏5)
4 𝑅4{𝜙−(𝜏0 , 𝜏6 , 310 ms, 340 ms), 𝜑(𝐶0 , 𝐶2)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐿1 , 𝜏0)→𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑝 , 𝜏6)
5 𝑅5{𝜙−(𝜏1 , 𝜏3 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑆𝑚 , 𝜏1)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵1 , 𝜏3)
6 𝑅6{𝜙−(𝜏2 , 𝜏4 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑚 , 𝜏2)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵2 , 𝜏4)
7 𝑅7{𝜙−(𝜏5 , 𝜏3 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑆𝑝 , 𝜏5)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵1 , 𝜏3)
8 𝑅8{𝜙−(𝜏6 , 𝜏4 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑝 , 𝜏6)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵2 , 𝜏4)

and 0.6252, respectively. Finally, we obtain the overall fault confidence
level for 𝐵1 by applying the MBRA to the integrated model in Fig. 12(g),
yielding 0.7924.

Step 6: According to the condition for Step 6 in Section 3.4 (𝜃 > 0.5),
bus 𝐵1 has developed a fault, because its fault confidence level is
0.7924 (> 0.5).

If we likewise carry out Steps 1–6 for bus 𝐵2 and lines 𝐿2 and 𝐿4,
we find that 𝐵2, 𝐿2 and 𝐿4 did not fail. Thus, for Case 3, the diagnosis
result is that only bus 𝐵1 failed, with a fault confidence level of 0.7924.

5. Conclusion and future work

Estimating which equipment is faulty is of great importance when
attempting to restore power systems after failures. In this paper, we
have proposed a graphical fault estimation method for power sys-
tems called FD-WCFRSNPS, based on rWCFRSNPSs. This method uses
rWCFRSNPSs to represent fuzzy fault alarm information and the MBRA
for reasoning, together with a temporal order information processing
method called TOIPM-CEN that corrects the alarm information. In
addition, we develop a layered approach to building fault diagnosis
models based on rWCFRSNPSs that enables them to adapt to changes
in power system topology, discussing in detail how the models are
built and the adaptive adjustment rules are derived. In addition, we
discuss suitable parameter values for transmission lines, buses and
transformers.

The FD-WCFRSNPS provides highly accurate diagnoses, thanks to
the TOIPM-CEN and layered fault diagnosis models. In addition, the
proposed modeling method makes the fault diagnosis process easier
to understand, illustrating it with intuitive graphical layered models,

Fig. 13. The CEN representing the logical relationships between 𝐵1 failing and the
corresponding alarm messages.

providing good expressions for the relationships between faults and
protective devices, and offering an intelligible and adaptive diagnosis
model-building process. Our method avoids the weakness of the empir-
ical values used by trapezoidal fuzzy number (Wang et al., 2015e) and
intuitionistic fuzzy number (Peng et al., 2018) approaches. In addition,
the FD-WCFRSNPS is suitable for large power systems or power grids
with variable topologies, such as those involving distributed generation
(DG) or microgrids.

This study has proposed the FD-WCFRSNPS and tested its feasibility
and effectiveness for estimating faulty equipment in power systems by
working through a detailed implementation. As a case study, we have
considered a typical 220 kV power system. We are currently working
on applying the FD-WCFRSNPS to large-scale power systems and power
grids with DG or microgrids. Until now, SNPS-based fault diagnosis
methods have focused on using remote signals, but our future work will
focus on using such a method for data-driven fault diagnosis with multi-
source fault information (Fan and Liao, 2019) and analyzing complex
problems in smart grids from the perspective of complex networks (Wen
and Deng, 2020, 2019). Besides, the work in this paper is done based
on the normal operation of the SCADA system without regard for
the information transmission time delay, communication failures and
hacker attacks. So, the fault diagnosis of power systems considering
extreme cases, such as communication failures, attacks and strong inter-
dependencies between communication networks and physical networks
in power systems, is also our important future research directions.

13



Table 5
Fault alarm messages of protective devices for cases 1–5.

Cases Protective devices

Protective relays Circuit breakers

1 𝐿2𝑆𝑚(31 s), 𝐿2𝑅𝑚(32 ms) 𝐶𝐵8(64 ms), 𝐶𝐵12(66 ms)

2 𝐵1𝑚(20 ms), 𝐿2𝑆𝑚(23 ms), 𝐿2𝑅𝑚(24 ms)
𝐶𝐵6(49 ms), 𝐶𝐵4(50 ms), 𝐶𝐵5(51 ms), 𝐶𝐵7(51 ms)
𝐶𝐵9(52 ms), 𝐶𝐵8(56 ms), 𝐶𝐵12(57 ms)

3 𝐵1𝑚(50 ms), 𝐿2𝑅𝑠(563 ms), 𝐿4𝑅𝑠(575 ms)
𝐶𝐵4(85 ms), 𝐶𝐵5(87 ms), 𝐶𝐵7(83 ms),
𝐶𝐵9(84 ms), 𝐶𝐵12(585 ms), 𝐶𝐵27(600 ms)

4 𝐵1𝑚(20 ms), 𝐿2𝑆𝑚(23 ms), 𝐿2𝑅𝑚(24 ms)
𝐶𝐵4(50 ms), 𝐶𝐵5(51 ms), 𝐶𝐵7(51 ms), 𝐶𝐵8(56 ms)
𝐶𝐵12(57 ms), 𝐶𝐵9(182 ms), 𝐶𝐵6𝑓 (275 ms), 𝐶𝐵10(301 ms)

5 𝐵1𝑚(20 ms), 𝐿2𝑅𝑚(24 ms)
𝐶𝐵6(49 ms), 𝐶𝐵4(50 ms), 𝐶𝐵5(51 ms), 𝐶𝐵7(51 ms)
𝐶𝐵9(52 ms), 𝐶𝐵8(56 ms), 𝐶𝐵12(57 ms), 𝐶𝐵10(300 ms)

Table 6
Comparisons between the FDWPSNP and four other methods.

Cases Faulty Diagnosis results Information

equipment FD-WCFRSNPS AM (Zhang
et al., 2016)

FPN (Sun et al.,
2004)

rFRSNPS (Peng
et al., 2013)

ivFRSNPS (Wang
et al., 2019a)

evaluation

1 𝐿2 𝐿2 𝐿2 𝐿2 𝐿2 𝐿2 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝑐𝑜𝑟𝑟𝑒𝑐𝑡
3 𝐵1 𝐵1 𝐵1 𝐵1 𝐵1 𝐵1 𝐶𝐵6 , 𝐶𝐵10 ∶ 𝑟𝑒𝑓𝑢𝑠𝑒𝑑
4 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐿2 𝐿2 𝐿2 𝐶𝐵6 ∶ 𝑟𝑒𝑓𝑢𝑠𝑒𝑑; 𝐶𝐵9 ∶ 𝑓𝑎𝑙𝑠𝑒 𝑡𝑖𝑚𝑒
5 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐿2 𝐵1 , 𝐵2 , 𝐿2 𝐵1 , 𝐵2 , 𝐿2 𝐵1 , 𝐵2 , 𝐿2 𝐿2𝑆𝑚 ∶ 𝑙𝑜𝑠𝑡; 𝐶𝐵10 ∶ 𝑤𝑟𝑜𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

Table 7
Formal representation of event nodes shown in Fig. 13.

Symbol Formal
representation

Symbol Formal
representation

Symbol Formal
representation

𝐶0 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0) 𝐶6 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵9 , 𝜏6) 𝐶12 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿4𝑅𝑠 , 𝜏12)
𝐶1 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1) 𝐶7 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵𝐹 , 𝜏7) 𝐶13 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿3𝑅𝑠 , 𝜏13)
𝐶2 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵4 , 𝜏2) 𝐶8 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵8 , 𝜏8) 𝐶14 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵11 , 𝜏14)
𝐶3 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵5 , 𝜏3) 𝐶9 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵10 , 𝜏9) 𝐶15 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵12 , 𝜏15)
𝐶4 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵6 , 𝜏4) 𝐶10 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑠 , 𝜏10) 𝐶16 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵27 , 𝜏16)
𝐶5 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵7 , 𝜏5) 𝐶11 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿2𝑅𝑠 , 𝜏11) 𝐶17 𝐶𝑡𝑟𝑖𝑝(𝐶𝐵28 , 𝜏17)

Table 8
Conditional implication rule set for the CEN shown in Fig. 13.

Number Rule

1 𝑅1{𝜙−(𝜏0 , 𝜏1 , 10 ms, 40 ms)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0)→𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1)
2 𝑅2{𝜙−(𝜏1 , 𝜏2 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵4 , 𝜏2)
3 𝑅3{𝜙−(𝜏1 , 𝜏3 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵5 , 𝜏3)
4 𝑅4{𝜙−(𝜏1 , 𝜏4 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵6 , 𝜏4)
5 𝑅5{𝜙−(𝜏1 , 𝜏5 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵7 , 𝜏5)
6 𝑅6{𝜙−(𝜏1 , 𝜏6 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵1𝑚 , 𝜏1)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵9 , 𝜏6)
7 𝑅7{𝜙−(𝜏0 , 𝜏7 , 310 ms, 340 ms), 𝜑(𝐶1 , 𝐶4)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0)→𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵𝐹 , 𝜏7)
8 𝑅8{𝜙−(𝜏7 , 𝜏8 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵𝐹 , 𝜏7)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵8 , 𝜏8)
9 𝑅9{𝜙−(𝜏7 , 𝜏9 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐵𝐹 , 𝜏7)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵10 , 𝜏9)
10 𝑅10{𝜙−(𝜏0 , 𝜏10 , 510 ms, 40 ms), 𝜑(𝐶0 , 𝐶1)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0) →𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑠 , 𝜏10)
11 𝑅11{𝜙−(𝜏0 , 𝜏11 , 510 ms, 540 ms), 𝜑(𝐶0 , 𝐶1)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0) →𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿2𝑅𝑠 , 𝜏11)
12 𝑅12{𝜙−(𝜏0 , 𝜏12 , 510 ms, 540 ms), 𝜑(𝐶0 , 𝐶1)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0) →𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿4𝑅𝑠 , 𝜏12)
13 𝑅13{𝜙−(𝜏0 , 𝜏13 , 510 ms, 540 ms), 𝜑(𝐶0 , 𝐶1)}: 𝐶𝑓𝑎𝑢𝑙𝑡(𝐵1 , 𝜏0) →𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿3𝑅𝑠 , 𝜏13)
14 𝑅14{𝜙−(𝜏10 , 𝜏14 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿1𝑅𝑠 , 𝜏10)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵11 , 𝜏14)
15 𝑅15{𝜙−(𝜏11 , 𝜏15 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿2𝑅𝑠 , 𝜏11)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵12 , 𝜏15)
16 𝑅16{𝜙−(𝜏12 , 𝜏16 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿4𝑅𝑠 , 𝜏12)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵27 , 𝜏16)
17 𝑅17{𝜙−(𝜏13 , 𝜏17 , 20 ms, 40 ms)}: 𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑒(𝐿3𝑅𝑠 , 𝜏13)→𝐶𝑡𝑟𝑖𝑝(𝐶𝐵29 , 𝜏17)
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