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Abstract

In the era of many-core chips, the problem of power
density is a serious challenge. This is particularly
important in Network-on-Chip (NoC)-based systems,
where application mapping determines the resulting
power patterns and the workload distribution across
the entire chip. Despite this fact, the majority of
mapping algorithms focus on performance, and the
resulting power patterns are largely ignored. This
work investigates this problem. Three different
power pattern metrics with different scopes are
defined, namely, power peak, power range, and
regional power density. The results of using them
as mapping objectives together with communication
cost using a multi-objective evolutionary mapping
approach are investigated. Results show that em-
ploying power patterns results-in Pareto fronts with
different power patterns and features. Results are
analysed and discussed. Moreover, a case study of
thermal analysis of the resulting power patterns is
performed. Results show that using communication
cost only results-in large hotspots which translates
into higher peak and range of chip temperatures.
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The proposed mapping objectives are shown to
significantly improve thermal balancing (up to
55%) and peak temperature (up to 7.77%). These
results indicate the importance of considering power
patterns in the design of NoC-based many-core
systems and their direct impact on the reliability
and performance of such systems.
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1 Introduction

The rapid shrinking of feature size in VLSI systems
and the unprecedented increase in integration den-
sity lead to the emergence of Systems-on-Chip (SoCs)
and many-core processing chips with tens, or even
hundreds, of processing cores [38] [46] [32]. Perfor-
mance and reliability of such systems is mainly de-
termined by the performance of communication sub-
system used to interconnect on-chip processors and
other Intellectual Property (IP) components. As a re-
sult, network-on-chip (NoC) was proposed as a com-
munication medium to address the major challenges
facing on-chip communication in these large systems.
NoCs provide reliability and high-performance in ad-
dition to enabling modularity and scalability of SoC
design in general and many-core systems in particular
[4] [14].

Moreover, the increasing integration capacity is
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facing a major challenge. The higher density of tran-
sistors provides more functionality per unit area on
one hand and higher power density (power consumed
per unit area) on the other [30]. Higher power density
can lead to increased temperatures and deteriorates
power integrity which in turn increases transient and
permanent faults and decreases reliability [22, 9, 33].

One of the classical design problems in NoC archi-
tectures that has been previously addressed by many
researchers is the mapping of application tasks to pro-
cessing core and other IPs in a chip [29, 2, 3, 21].
However, many of such studies focus mainly on per-
formance and energy consumption and a little atten-
tion was given in literature to the alerting challenge
of power density. This is despite the fact that task
allocation plays a vital role in determining the power
distribution profile across the chip [13].

Power consumption patterns are characterised by
many factors. Static and dynamic power across the
chip are determined by CMOS technology, IC design
and layout. In addition to the switching workload.
In NoC-based SoCs this workload can be classified
into communicational and computational. These two
types of workloads have very different characteristics
and must be considered separately [13, 10, 19]. Al-
though the computational workload of an IP core
is mainly determined be the task running on that
core, the communicational workload of the router at-
tached to that core is affected by inter-core commu-
nication across the entire system. These facts imply
that both workloads need to be considered when ap-
plication mapping is performed, especially when this
mapping aims at optimising the power density pat-
tern across the system. These facts imply that both
workloads need to be considered when application
mapping is performed, specially when this mapping
aims at optimizing the power density pattern across
the system. This relationship is particularly impor-
tant with communication-intensive NoC-based many-
core systems. Neuromorphic computing systems such
as SpiNNaker and partially-ordered event-triggered
systems (POETS) are examples of communication-
intensive computational systems in which compu-
tation is completely modulated by communication
[6, 32].

In this work, we address the problem of task-

mapping in NoC-based architecture, using power
density patterns as objectives. We define three main
power density metrics and use these metrics as fit-
nesses, with communication cost, in a GA-based evo-
lutionary multi-objective mapping. The effect of
these metrics are on power consumption profiles and
the resulting thermal profiles across the chip die is
analysed. The results of different mapping strategies
are discussed and important conclusions are made.
The major contributions of this paper can be sum-
marised as follows:

� A new mapping strategy for mesh-based NoC
architectures is proposed. In contrast with sim-
ilar works that focuses mainly on energy and
communication cost, the new strategy focuses on
the resulting power patterns of task workloads in
the system.

� We define three different power pattern met-
rics a local one (power peak), a global one (power
range) and a regional one (regional power den-
sity) and employ them in a multi-objective evo-
lutionary mapping algorithm.

� The resulting mappings are investigated and
analysed in terms of the power pattern profile
characteristics and their impact on communica-
tion cost.

� A case study of thermal analysis of the result-
ing power patterns is performed and the pro-
posed metrics are compared in terms of thermal
distribution.

The remainder of this paper is organised as follows;
Section 2 gives a survey of the related work, Section
4 describes the proposed mapping objective and the
GA-based multi-objective mapping algorithm and
Section 6 presents and discusses the experimental re-
sults. Finally, Section 7 concludes the paper.

2 Related Work

The concept of power density in VLSI circuits was
first introduced by Najim et al. [30]. The authors
define transition density to be the average switching
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rate and develop a technique for computing average
switching rate based on stochastic models of logic sig-
nals. Results show that regions with higher switching
density can be thermal hotspots and could adversely
affect power supply integrity. Other studies show
that higher power density would have negative effect
on circuit reliability in terms of electro-migration fail-
ures [24]. This effect can be seen as another problem
with higher power density and motivates balanced
switching activity design in VLSI circuits. In [10]
the concept of harmonic mapping is first introduced.
The authors define a new application mapping metric
called repulsive force to increase workload balancing
and improve power supply integrity.

On the other hand, many studies have been pub-
lished on application mapping in NoCs. Mapping
tasks in many-cores system is a major design prob-
lem which is true mathematically because it is an
NP-hard problem [17]. Moreover, the changing objec-
tives, under-layer architecture, and technology con-
straints increase the complexity of the mapping prob-
lem. The majority of previous mapping techniques
aimed at the minimisation of communication la-
tency, reducing power or increasing fault tolerance
[36, 39, 5]. These mappings target either fixed NoC
topology, such as mesh, or a custom topology based
on application communicational requirements.

Mapping algorithms can be classified as either
static, where tasks are mapped at design time, or dy-
namic, where mapping takes place at run-time. The
dynamic mapping is more flexible and usually results
in better performance especially in the case where ap-
plication characteristics are unknown at design time
[8, 31]. Moreover, it enables tasks to migrate be-
tween cores based on the dynamics of the system (e.g
faults or overheating) [49]. However, the computa-
tion power required for such algorithms and the de-
lay of getting the mapping results may significantly
reduce the expected advantages [39]. By contrast,
static mapping is performed once at the design time,
alleviating the complexity of dynamic mapping and
makes it more common in the literature.

Static mapping can be classified into exact and
search-based mapping. To achieve good mapping re-
sults, exact mapping uses exact solution procedures
such as linear programming to determine the opti-

mal assignment of the tasks to cores [41]. However,
in these algorithms, latency increases exponentially
with the number of tasks. Srinivasan et al. used clus-
tering to overcome this complexity by a divide and
conquer method where the graph is clustered and the
best mapping solution is determined for each cluster
then the solutions are combined into a final mapping
[41].

Search-based mapping can be classified into de-
terministic and heuristic-based search. Determinis-
tic search is also known as the systematic search.
One example of deterministic search is branch and
bound, in which the search for a mapping solution
is done through branching into candidate solutions,
and the branch is evaluated and discarded if it falls
outside the bounds of the optimal solution. However,
even with pruning techniques to reduce search time,
the delay continues to increase exponentially with the
number of cores [36]. Furthermore, tree-based search
is used to find a routing and mapping solution with
improved performance and reduced power consump-
tion [21].

Heuristic search is the most commonly used map-
ping technique in the literature due to its lower de-
lay compared to other methods. Researchers have
used heuristic algorithms for dynamic mapping [8].
However, heuristic algorithms are more convenient
for static mapping. Heuristic search can be divided
into transformative and constrictive. In case of con-
strictive heuristic algorithms, the tasks are mapped
in succession based on the mapping objective, and
some cores may get re-mapped in later stages to effec-
tively satisfy these objectives. In other words, con-
strictive heuristic search is a step by step mapping
process that allows some iterations at later stages for
more improvements. As a result, this class of heuris-
tic search targets local optimum solutions [45, 34, 16].

Transformative heuristic algorithms try to avoid
local optimum and aim at global optimum mak-
ing them easy to adapt to any mapping objective
such as improving performance and power consump-
tion. Examples are meta-heuristic algorithms such
as Ant Colony Optimization (ACO), Genetic Algo-
rithms (GA), Artificial Bee Colony (ABC) and Par-
ticle Swarm Optimization (PSO). However, the main
disadvantage of such algorithms is the execution time,
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which is random and relatively high compared with
constrictive heuristic search algorithms. Examples of
such algorithms are A3MAP-GA and FGMAP which
are proposed to improve the performance and power
of NoC-based homogeneous and heterogeneous many-
core systems [23, 42]. Furthermore, PSO is used by
Sahu et al. to optimize communication cost [35].

Some application mapping studies focused on the
alerting problem of thermal optimization of NoC-
based many-core systems [28, 27, 47, 26]. For ex-
ample, fuzzy logic is used for mapping by Mosayye-
bzadeh et al. where the authors proposed using
fuzzy-based optimization to minimise power and tem-
perature in 3D-NoC systems [28]. They consider that
heat dissipation of cores based on their locality and
use fuzzy-based algorithm to prioritize the improve-
ment of heat dissipation of cores considering commu-
nication and power requirements in addition to dis-
tance to hotspots. The proposed technique reduces
temperature while improving power consumption and
latency.

Liu et al. proposed a thermal-aware task map-
ping for reconfigurable NoC (SMART) [27]. The pro-
posed NoC bypasses multi-hops between active cores
enabling scattering of active cores and ensuring im-
proved thermal distribution with lower communica-
tion latency overhead. In Wang et al., another ther-
mal mapping is proposed along with thermal mod-
eling [47]. On the bases of the thermal model, a
greedy algorithm maps tasks to the core with min-
imal thermal impact. The proposed schemes com-
prise three main parameters, namely, algorithm com-
plexity, performance and thermal impact. Similarly,
Li et al. presents an algorithm that compromises
performance and thermal impact [26] in 3D NoCs.
Mapping is done dynamically at runtime by defrag-
menting block of application tasks to the corners of
the 3D many-core systems, always preserving the
middle for the next application. This technique is
claimed to improve thermal dissipation; at the same
time, new application tasks will be allocated adja-
cent to each other reducing possible communication
overhead. However, results show improvement of the
runtime but not the thermal impact.

Many of these studies focus mainly on performance
and energy consumption or address the thermal im-

pact of mapping. Little attention is given in literature
to power distribution patterns and power density,
which are the direct causes of temperature and power
supply noise. Even with the few cases where this met-
ric was used, the work mainly focused on computa-
tional workload and ignored communicational work-
loads and their effect on the power dynamics across
the system [43]. In this work, we address the prob-
lem of task-mapping in NoC-based architectures us-
ing the resulting power patterns as a design objec-
tives. Three main power density metrics are defined
and used, with communication cost, in a GA-based
evolutionary multi-objective mapping algorithm. Re-
sults are investigated and analysed in terms of the
power pattern characteristics and impact on commu-
nication cost. Furthermore, thermal analysis of the
resulting power patterns is presented as one possible
advantage of the proposed power density optimisa-
tion.

It is worth mentioning here that thermal optimisa-
tion is not the main focus of this work. We believe
that power density optimisation has many other ben-
efits such as improving power supply integrity, reduc-
ing permanent and transient faults and improving re-
liability, in addition to improving thermal integrity.
However, we choose to show the thermal advantages
of the proposed new mapping objective as an example
and due to the importance of this problem.

3 Background

In this section, the related background concepts are
described and notations used in this paper are de-
fined.

3.1 Application Mapping in NoCs

The NoC architecture can be defined using a directed
graph called Architectural Graph ARG = G(C,P ). A
vertex, ti ∈ T , represents an NoC Intellectual prop-
erty core (IP) and each directed arc pi,j ∈ P , repre-
sents the path from core i to core j. Each path pi,j
consists of a set of links L(pi,j). The set L(pi,j) is
given by the routing algorithm adopted by the NoC
system. In this paper, we assume a homogeneous
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Figure 1: The homogeneous NoC-based mesh archi-
tecture considered in this work.

mesh-based NoC architecture, as illustrated in Fig.
1.

Applications are described as a directed acyclic
graph called Application Graph (APG = G(S,A)),
in which vertices, si ∈ S, represent tasks and arcs,
ai,j ∈ A, represent the communication from task si
to task sj . The arc weights represent the commu-
nication bandwidth requirements from task si to sj ,
bw(ai,j) and the total data volume v(ai,j).

The mapping problem can be stated as follows:
Given an application graph, APG and an archi-

tectural graph, ARG, find a mapping function that
maps APG to ARG as follows:

Ω : APG(S,A)→ ARG(C,P ), (1)

where each task, si, in APG is mapped to a
core(ci = Ω(si)) in the ARG and each arc, ai,j in
the APG is mapped to a path, pi,j , in the ARG.
The mapping function Ω should satisfy a specific op-
timisation metric such as minimising energy cost [20]
or maximising performance [29] and can also satisfy
multiple objectives [2].

3.2 Communication Cost

Communication cost, Ccost, of a mapping function is
used together with power pattern metrics to evaluate
mappings in this work. Ccost for a given mapping Ω

can be defined as follows:

Ccost(Ω) =
∑

ai,j∈A
v(ai,j)× |L(PΩ(i),Ω(j))|, (2)

where |L(Pi,j)| is the length of the path Pi,j (num-
ber of links from core i to j) and Ω(i) is the core to
which task i is assigned. The routing path (and the
resulting number of hops) from source to destination
cores i and j, L(Pi,j is determined by the routing al-
gorithm. In this work the XY routing algorithm is
assumed. XY is a deterministic, deadlock free rout-
ing algorithm, which routes packets from its source
along the X direction first then along the Y direction
towards its destination.

3.3 NoC Power Model

An NoC tile, k, consists of a number of computational
units such as floating point unit (FPU), SRAM, etc.
In addition to communication units such as Network
interface (NI) router, channels etc. For a unit u in
an NoC tile k (u ∈ k) the power (Pu) is defined as
a function of the unit’s maximum power consump-
tion (Pmax

u ) and its switching activity factor (αu) as
follows:

Pu = Pmax
u αu (3)

Here, αu is the ratio of unit’s switching workload
to its maximum workload and ranges from 0 to 1.

Now, the power of an NoC tile k, Pk, that con-
sists of a set of units, can be expressed as the sum of
powers of it’s units as follows:

Pk =
∑
∀u∈k

Pu =
∑
∀u∈k

Pmax
u αu, (4)

where Pk is the power tile k.
In contrast with other tile units whose activity fac-

tor is mainly determined by the computational load
of the task assigned to the tile, router’s activity, αr, is
determined by a router’s communication load which
is set by the communication demand of the applica-
tion and the placement of the communicating tasks
across the whole NoC system. Considering router r
with Nr number of channels, Wr channel width and
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Fr frequency, the maximum bandwidth capacity of r,
BWmax

r , can be expressed as:-

BWmax
r = Wr ×Nr × Fr (5)

The actual load of the router is the average band-
width, BWr and is determined by the application
mapping function (Ω) and the routing algorithm.
The router load is the summation of loads of all chan-
nels in the router. For router r with a set of channels
(CHr) the router load can be expressed as:

BWr =
∑

ch∈CHr

BWch, (6)

where BWch is the communication bandwidth of
channel ch. Now the activity factor of router r, αr,
can be computed as

αr =
BWr

BWmax
r

, (7)

and the router power, Pr can be expressed as

Pr = Pmax
r αr = Pmax

r

BWr

BWmax
r

, (8)

To compute power consumption of computational
units in an NoC tile, it is shown that Rent’s rule still
applies for packet-based systems for a wide range of
applications[18, 19]. Thus, in this work, power con-
sumption of any computational unit in a tile is as-
sumed to be modulated by its communication power.
This energy dynamically changes according to local
data transfer from/to the local router. Thus, the
power of computational units Pc is computed as:

Pc = β × Pch(local) (9)

where Pch(local) is the power consumed by the local
channel in a router and β is the ratio of the commu-
nication to the computation power of computational
unit c.

The total power of the tile k, Pk, can be expressed
as the summation of both communication (router)
and computation powers:

Pk = P k
r + P k

c (10)

where P k
r , P k

c are communication and computation
powers for tile k, respectively.

A summary of some of the notations used in this
paper is illustrated in Table 1.

Notation Description
ARG(C,P ) NoC architectural graph with the set of NoC

IP cores {C} as vertices and the set of paths
{P} among these cores as arcs.

APG(S,A) Application graph with the set of tasks {S}
as vertices and the set of communications {A}
among these tasks as arches.

L(p) The set of NoC links that constitute a path p
in the architectural graph ARG.

Ω Mapping function that maps application graph
to architectural graph.

Ccost Communication cost
BWmax

r (Ω) The bandwidth capacity of router r.
BWr(Ω) The bandwidth load of router r.
αu Activity factor of VLSI unit u.

Pk
r Communication power of NoC tile k

Pk
c Computation power of NoC tile k
Pk total Power of NoC tile k
Ppeak Peak of power
Prange Range of power (min−max)
Dpeak Peak of regional power density in a NoC.

Table 1: notations used in this paper

4 Methodology

4.1 Power Density Optimisation Ob-
jectives

Higher power density is associated with higher
switching activity and unbalanced spatial power con-
sumption profiles in a chip leads to higher spatial
variations in power densities causing higher vari-
ations in temperatures [12], power supply voltage
[13, 43], logic delay [37] and unbalanced chip wear-
out [24]. These variations and unbalances are ma-
jor causes of permanent and transient faults and ad-
versely affect reliability in VLSI circuits [9].

This work aims at studying multiple power den-
sity metrics that characterise power variations across
NoC-based many-core systems. We begin by defin-
ing the metrics we are proposing in this paper. It is
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worth mentioning here that this work does not aim
at optimizing a specific power density metric but to
propose and study these metrics and compare their
benefits and their impact on performance. We de-
fine three metrics that characterise power density and
variations across the chip.

1. Peak Power (Ppeak)

2. Range of Power (Prange)

3. Peak Regional Power Density (Dpeak)

The rationale behind these three metrics is that
we define them with different scopes. Power peak is
local, power range is global (covers the whole chip)
and regional power density is defined over a region
within the chip.

To describe the power density metrics used in this
paper, we define Ptiles as the set of power consump-
tions of all tiles in the NoC as follows:

Ptiles = {Pk | 0 ≤ k ≤ N − 1}, (11)

where N is the number of tiles, Pk is the power
consumption of the kth tile.

4.1.1 Peak Power

Higher peak power in a many-core system is often
associated with hotspot formation, higher tempera-
tures and lower reliability [24, 10, 11]. Assuming ho-
mogeneous NoC architecture, we define peak power,
Ppeak, across the NoC tiles as the maximum power
consumed across NoC tiles. i.e.,

Ppeak = max(Pk) | ∀k ∈ T , (12)

where T is the set of all tiles in the NoC.
Notably Pk comprises two components (Eq. 10).

Thus, incorporating this metric as an optimisation
objective balances the two components (communica-
tion and computation) for the hotspot in the NoC.

4.1.2 Range of Power

Unbalanced power consumption across the NoC-
based many-core systems can be measured using the
range of power Prange which can be defined as follows:

Prange = max(Pk)−min(Pk) | ∀k ∈ T (13)

A higher range is the result of unbalanced distribu-
tion of both communication and computation work-
loads across the chip. The result of a higher power
range is higher thermal variability, unbalanced wear-
out and higher transient and permanent faults [11].
It can also lead to under and over-utilised NoC tiles,
reducing performance and increasing wasted power
[44].

4.1.3 Regional Power Density

In many cases, a metric that considers a region in the
chip is necessary., especially if the NoC size is very
large and the physical parameter that is related to
power density is more affected by the power profile
within a certain region than that of the entire chip.

In this work, we use the metric of regional power
density in addition to the two metrics above. Re-
gional power density of a tile k , (Dk) is defined in
terms of power consumption within a region of a par-
ticular size in the vicinity of the tile of interest k
[10]. For tile k we define this region as the set of all
tiles j that satisfy dist(k, j) ≤ R, where dist(k, j) is
the Manhattan distance between tiles k and j and R
is the region radius. Considering a regular NoC with
similar tile sizes and architectures, the regional power
density of tile k, Dk is a function of region radius R
and power consumption of the tiles within R and can
be expressed as follows:

Dk =

∑
dist(k,j)≤R

Pj∑
dist(k,j)≤R

Aj
(14)

where R is a predefined region size. Pj and Aj are
the power and area of NoC tile j, respectively.

The peak regional power density is the maximum
density across NoC tiles and can be expressed as

Dpeak = max(Dk) | ∀k ∈ T (15)

Notably, the area is considered in all the three met-
rics above, peak, range and regional power. How-
ever, we are targeting homogeneous many-core archi-
tecture and so area is the same for all tiles. Thus
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the peak power, for example, is the peak power den-
sity and the range of power is the range of densities
among tiles. Since area is the same for all tiles across
the target NoC, the tile area can be excluded from
calculations of these metrics. Regional power density
has higher dependency on the area since we are intro-
ducing the concept of region here which is defined in
terms of the number of tiles due to the homogeneity
of the system..

4.2 Problem Formulation

We now formulate the problem of power density-
aware mapping in NoCs. The problem is formulated
as a multi-objective mapping that uses two objec-
tives, namely, a power density metric (one of the
metrics defined in equations 12, 13 or 15) and a cost
metric (communication cost defined in 2)

The mapping problem can be formulated as fol-
lows:

Given: Application graph, APG(S,A) and NoC
architectural graph, ARG(C,P ) that satisfy

|S| ≤ |C| (16)

find: A mapping function Ω that maps each task in
APG to a tile in ARG

Objective: minimize the set F = {Ccost, PD},
where PD is a power density metric ( equations 12,
13 or 15)

such that:

Ω(si) ∈ C , ∀ si ∈ S (17)

Ω(si) 6= Ω(sj) , ∀ si 6= sj (18)

BW (lk) ≤ BWmax(lk) , ∀ lk ∈ L(pi), ∀pi ∈ P(19)

where BWmax(lk) is link capacity (maximum band-
width) and BW (lk) is link bandwidth which is de-
termined by the application mapping function and
computed as

BW (lk) =
∑
∀ai,j∈A

b(ai,j)× π(lk, p(Ω(si),Ω(sj)))

(20)
where π(l, p) is a boolean function that determines
whether a link l belongs to the the set consisting path
p, L(p), or not.

The first condition (Eq. 17) is used to ensure that a
task is mapped to a single tile, while the second (Eq.
18) ensures that no more than a single task is mapped
to a tile. In other words, Eqs. 17 and 18 ensure that
one-to-one correspondence occurs between tasks in
APG and cores in ARG. The third constraint (Eq.
19) guarantees that links (and hence routers) are not
assigned bandwidths that exceed their capacity.

In this study, an evolutionary algorithm (EA)-
based solution is adopted, namely,the Non-
Dominated Sorting Genetic Algorithm, NSGA
II [15] which will be described in the following
section.

5 Evolutionary Algorithm So-
lution

Application mapping in NoCs is known to be an NP-
hard problem[20]. For an NoC size of n × m, the
possible solutions are (n×m)!. Meta-heuristic meth-
ods are commonly used to solve such problems. In
this work, an evolutionary based approach is used
and will be described in this section.

5.1 Gene and Chromosome Encoding

A mapping solution is encoded as chromosome. Each
gene in this chromosome is the core number. In other
words, the chromosome is a one-dimensional array in
which the number at the ith location represents the
core (or tile) that task i is assigned to as illustrated
in Fig. 2.

5.2 Crossover, Repair and Mutation

In evolutionary algorithms, crossover and mutation
play a vital role in the performance of the used al-
gorithm. These two processes are used to generate
the next generation in the evolutionary process and
must be chosen to provide a good exploration of the
solution space.

The crossover operator is illustrated in Fig. 2.
When two parents are crossed over (parent 0 and par-
ent 1 in Fig. 2), a random crossover point is selected
and the two children (child 0 and child 1 in Fig. 2)
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are formed by swapping the genes of the two parents
up to this crossover point.

This crossover process results in some deformed
genes in the resulting children because chromosomes
cannot have duplicates because cores can only con-
tain one task (Eq. 18). Thus, a repair phase is nec-
essary to create valid children by simply swapping
the invalid genes in the two children to create valid
chromosomes, as illustrated in Fig. 2.
Mutation happens to the population with a certain

rate in each evolutionary cycle. When a certain mem-
ber of the population is selected, mutation happens
by randomly selecting two genes within that chromo-
some and swapping them.

0 1 2 3 4 5 6 7

1 7 6 3 0 5 2 4

2 7 0 3 6 4 1 5

2 7 0 0 5 43child 0

1 7 6 6 4 53

parent 1

parent 0

random crossover
point

2 7 0

0

5

2

43

1 7 6

6

4

1

53

need repair

repaired

child 1

child 0

(repaired)

child 1

(repaired)
2

1

Figure 2: Illustration of the crossover operator with
repair phase.

5.3 Non-dominated Sorting Genetic
Algorithm (NSGA II)

The multi-objective NSGA II is used to achieve op-
timising communication cost and power density met-
rics [15].

The NSGA is a multiple objective optimization
(MOO) approach. Two types of NSGA are devel-

oped, namely, the traditional NSGA and updated
NSGA or NSGA II which is used in this work.

NSGA II aims at finding the best non-dominated
front (Pareto front) in a multi-objective optimisation
problem. NSGA II adopts the main steps of EA algo-
rithms (selection, crossover and mutation). However,
the score of an individual is a vector. Each objective
is represented as member in the scores vector. The
parent population is chosen after sorting the current
population into a hierarchy of sub-populations based
on their Pareto dominance. Members with high dom-
inance are favoured over those with low dominance. If
a selection is required from a sub-population with the
same rank of dominance, crowding distance is used
to favour members with less similarity and promote
a diverse front of solutions.

5.4 NSGA II - Based Mapping

The NSGA II algorithm used in this work to solve
the NoC mapping problem is shown in Algorithm 1.
The algorithm aims at finding the Pareto front that
represents the best trade-off between two mapping
objectives, communication cost and a power density
metric. These two metrics are computed using Fcost

and FPD functions. The algorithm uses an applica-
tion graph (APG) and an architectural graph (ARG)
as inputs.

Initially, the algorithm starts with a random pop-
ulation of mappings of size N (line 1). The main
evolutionary loop starts at line 2 which iterates until
a stop condition is satisfied (the max number of gen-
erations is reached in this case). The algorithm then
sets the set of parents (Pparents) to empty set and
parents number Np to zero (lines 3 and 4). In line 5,
the scores of the current generation (scorsg) are com-
puted. Another loop accumulates members of popu-
lation to the set of parents (lines 6 - 15) by iteratively
selecting the non-dominated front members from the
population (line 7) and accumulating them to the set
of parents (line 12). Moreover, in each iteration the
Pareto-front members and their corresponding scores
are excluded from the population of the current gen-
eration Pg (lines 13 - 14). If the size of accumulated
Pareto-front members causes the number of parents
(Np) to exceed the allowed size (Nparents), a subset

9



Algorithm 1 Pseudo code of the NSGAII-based
NoC Mapping Solution

Define:
Nparents:parents population size
Nchildren:children population size
N : total population size, Nchildren +Nparents

Fcross: crossover operator
Fmut: mutation operator
Fcost: operator to evaluate communication cost
FPD: operator to evaluate a power density metric (Eq. 15,
12 or 13)

Input:
APG: application graph G(S,A),
ARG: architectural graph G(C,P ).

Output:
Pbest: is the optimal population of non-dominated map-
pings.
——

1: Pg ← generate random population(N,ARG,APG)
2: while (¬stop condition()) do
3: Pparents ← ∅
4: Np ← 0
5: scoresg ← compute scores(Pg , Fcost, FPD, ARG,APG)

6: while size(Pparents) < Nparents do
7: Pr0 ← find Pareto(Pg , population scores)
8: Np ← size(Pparents) + size(Pr0)
9: if Np > Nparents then

10: Pr0 ← reduce by crowding(Pr0, Np −Nparents)
11: end if
12: Pparents ← merge(Pparents, Pr0)
13: Pg ← Pgn{Pr0} # exclude Pr0 and its scores
14: scoresg ← scoresgn{scoresr0}
15: end while
16: Pchildren ← breed(Pparens, Fcross, Fmut, Nchildren)
17: Pt ← merge(Pparents, Pchildren)
18: end while
19: Pbest ← Pr0

20: RETURN Pbest

with the highest crowding-distance is selected from
the Pareto-front (lines 9-11).

When the set of parents is complete, the parents
are bred using the crossover and mutation operators
to generate Pchildren, the population of children (line
16). Then, Pparents and Pchildren are merged to form
the next generation. When the evolutionary loop fin-
ishes, the best Pareto front (Pbest) is the rank 0 front
of the last population Pr0 (line 19).

6 Results and Discussion

6.1 Simulation Setup and Tools

To evaluate the proposed mapping, three different
multi-objective (MO) mappings are evaluated. The
best mappings are obtained using NSGA II (Algo-
rithm 1). Each MO mapping has two objectives.
The first is one of the three power pattern metrics
(Equations 12, 13 or 15) while the second is the com-
munication cost (Eq. 2).

Results of MO mappings are compared to study
the effect of each of the power density metrics on
the resulting power profile, thermal distribution and
communication cost. Results of these MO mappings
are also compared with those of single objective EA
mapping with only communication cost (Ccost) as the
fitness function. In other words, four different map-
ping techniques are compared. These are

� PP-COM: multi-objective with Ppeak and
Ccost as objectives.

� PR-COM: multi-objective with Prange and
Ccost as objectives.

� DP-COM: multi-objective with Dpeak and
Ccost as objectives.

� SO-COM: single-objective with Ccost only as
the objective.

We used eight benchmarks, four real and four syn-
thetic. The details of these benchmarks are shown
in Table 2. Examples of these benchmarks are
shown in Fig. 3. The benchmarks have differ-
ent task numbers and communication requirements.
The real benchmarks include a telecommunications
benchmark (TELE)[29] and other three benchmarks,
the AMI49, AMI25 and MPEG4 decoder found in [1].
The four synthetic benchmarks are generated using
the XL-STaGe task-graph generation tool [7]. Table
2 shows the details of the benchmarks used.

Computing the power across NoC-based many-core
systems requires two simulation models. The first
computes the workload of different parts of the chip,
while the second is a power simulator. We used
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Name
# of # of target range of average
tasks edges NoC size BW[MB] BW[MB]

r
e
a
l

AMI25 21 51 5× 5 53.33 - 213.33 72.15

AMI49 48 435 7× 7 5.33 - 85.33 11.63

TELE16 13 22 4× 4 11.00 - 71.00 45.36

MPEG4 9 13 4× 4 0.50 - 910.00 266.77

sy
n
th

e
ti

c DAG01 33 55 6× 6 3.03 - 173.38 61.22

DAG02 47 139 7× 7 3.85 - 173.38 66.44

DAG03 48 143 7× 7 0.15 - 183.58 56.86

DAG04 35 91 6× 6 2.32 - 161.25 63.69

Table 2: Summary of the used benchmarks.

Noxim to simulate the NoC switching workload and
Orion 2.0 to compute power [25].

ASIC synthesis based on an industrial library
would give very accurate power evaluation. However,
since the iterative evolutionary approach which runs
the optimisation process many times is used in this
work we need fast-to-compute power models to finish
the optimisation in a reasonable time. Thus, we use
Orion 2.0 to model both static and dynamic power for
the NoC; notably, it is used by many previous works
at a high-level early stage in power analysis which is
the main focus of this paper.

The simulation model uses the application task-
graph and mapping function as inputs and calculates
the power of each component in the system. The
workload of the computational components is com-
puted as described in section 3.3. Temperature is
computed using Hotspot 6.0 [48]. The floorplan, fre-
quency, technology node and the power profile of In-
tel’s TeraFLOPS is used to compute power and tem-
perature [46].

6.2 Evolutionary Algorithm Optimi-
sation Results

An example of the fitness curve for single-objective
(SO-COM) EA mapping for the AMI49 benchmark
mapping is shown in Fig 4. In this mapping, only
Ccost is used as fitness. After 500 generations, the
fitness reached a steady value and the communication
cost dropped from 40,803 MB to 28,056 MB (reduced
by approximately 32%). This is a baseline technique
to which the proposed MO mapping techniques are
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Figure 3: Examples of (a) real, and (b) synthetic,
benchmarks.

going to be compared.
For multi-objective (MO) mappings, let’s start by

examining how the NSGA II algorithm is perform-
ing in finding a good Pareto front. The three power
pattern metrics used represent different region sizes
at which this metric is computed. A local one, peak
power (Ppeak), a global one (Pragen) and a regional
one (Dpeak). Fig. 5 shows the Pareto fronts of the
MO mapping techniques plotted with 10,000 random
mappings. The result for single-objective mapping is
also shown here for comparison (SO-COM).

For the three MO cases (Figs 5(a), 5(b) and 5(c))
significant improvement over random mappings oc-
curs. Furthermore, the power pattern metric with
the best results, in terms of Ccost penalty, is the local
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Figure 4: Example of the fitness curve of single-
objective EA mapping for the AMI49 benchmark

one (Ppeak in Fig. 5(a)), whereas the one with the
widest range Pareto front is the global one (Prange

in Fig. 5(b)). Notably, the regional power density
metric (Dpeak in Fig. 5(c)) is between the other two
in terms of the size of the Pareto front.

6.3 Effect on Communication Cost

In this section, we investigate how the three power
pattern metrics affect a cost metric (the communica-
tion cost, Ccost) which is used with them in multi-
objective EA mapping. Fig. 6 shows the effect of the
three MO mapping strategies on communication cost.
This figure shows box-plots indicating the Pareto-
fronts of the three MO mappings together with that
of a random population of 10,000 mappings for all
the used benchmarks. These box-plots confirm the
results of the example shown in Fig. 5. The global
power pattern metric (PR-COM) results in the widest
range of values while the local one (PP-COM) has the
narrowest. This finding is consistent for all the used
benchmarks, real or synthetic. Moreover, except for
a few cases, the best improvement in Ccost is achieved
by the local metric PP-COM.

6.4 Results of Power Variations

The results of how the proposed mapping techniques
are affecting the spatial power variations is shown in
Figs. 7 and 8.

(a) PP-COM

(b) PR-COM

(c) DP-COM

Figure 5: Pareto fronts of the multi-objective mapping tech-
niques of compared to 10,000 random mappings of the AMI49
benchmark12
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Figure 6: Box-plots showing the impact of the three mapping objectives and the random population on
communication cost all the used benchmarks

Fig.7 shows the different power spatial profiles
that the proposed mapping techniques are produc-
ing. This Figure shows the spatial power distribu-
tion of single objective mapping (SO-COM) which
minimises Ccost and the three MO mappings. The
MO mappings in Fig. 7 are for a selected point
from the Pareto front that provide the best com-
promise between the power metric (Ppeak, Prange or
Dpeak) and Ccost. This point is chosen to be mid
point in the Pareto-front (point B in Figs. 5(a), 5(b)
and 5(c)). As predicted, it can be seen that single-
objective mapping which considers Ccost only causes
tasks with higher communication workload and high-
power draw to come close to each other and results-in
hotspots (Fig 7(a).

Using MO mappings with power density metrics
as the second objective leads to more homogeniety
in power distributions. The resulting power distri-
bution pattern, however, depends on the power met-
ric used. When using Ppeak as a second objective
(Fig. 7(b)), the peak of power is lower. However,
we can still see connected regions with high power
draw compared with other parts of the chip. When

Prange is used as a second objective (Fig. 7(c)), the
power range has reduced significantly (only 0.45 W
in this particular case compared with approximately
0.77 W in the case of SO-COM)resulting in the best
balanced spatial power pattern among those shown in
Fig. 7. With DP-COM mapping, using the peak re-
gional density as a second objective (Dpeak) produces
a spatial power pattern with scattered hotspots and
smaller clusters of high-power regions (Fig. 7(d)).

Fig. 8 shows the spatial power distribution of
SO-COM (single objective mapping that minimises
Ccost) and three mappings selected from the Pareto-
front of the PP-COM multi-objective mapping. The
three points are max. Ppeak , mid-point and min.
Ppeak (points C, B and A in Fig. 5(a), respectively).
The Pareto front explores a good range of spatial
power patterns. This range starts with a bigger
hotspot region (Fig. 7(b)), with low Ccost penalty, to
a more flattened and harmonic pattern (Fig. 8(d))
with relatively high Ccost penalty. In the middle of
this range is Fig. 8(c) which gives a good compromise
between the two objectives, Ccost and Ppeak.

Table 3 summarises the results of the power pat-
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Figure 7: Exploring the mapping objectives: Comparing the S.O. mapping (SO-COM) and the three
MO mappings for the AMI49 benchmark.
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Figure 8: Exploring the Pareto front : Comparing S.O mapping (SO-COM) with selected three Pareto
points of an MO mapping (PP-COM). (a) SO-COM, (b) max. Ppeak (c) best compromise with Ccost and
(c) min. Ppeak, Pareto points. Results shown are for the AMI49 real benchmark.

terns resulting from the mapping strategies for all
the benchmarks. The table shows Ccost, Ppeak and
Prange for each mapping and the difference in Ccost

compared with SO-COM mapping (Ccost penalty). It
can be noticed that incorporating Ppeak and Prange

as second objectives with Ccost reduces the incorpo-
rated parameter significantly compared with a sin-
gle objective. Furthermore, Ppeak has, on average,
the lowest Ccost penalty (only 1%), whereas Prange

has the highest (nearly 18%). Peak regional density,

Dpeak, is shown to be a middle ground between the
two, not only in terms of Ccost penalty but also in
terms of spatial power profile characterisation param-
eters, Ppeak and Prange.

6.5 Thermal Analysis

Spatial power distribution pattern has a direct ef-
fect on many chip parameters including permanent
and transient faults, power supply integrity and tem-
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Figure 9: Comparing the best Pareto point of the three power density metrics. (a) single objective (Ccost),
(b) max. of power (Ppeak), (c) range of power, (Prange) and (d) max. of regional density, Dpeak, for the
AMI49 benchmark
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Figure 10: Comparing (a) single objective (Ccost) with three Pareto points (b) max. Dpeak (c) good com-
promise with Ccost and (d) min. Dpeak, of DP-COM multi-objective mapping for AMI49 benchmark

perature [43, 11, 24, 9]. Thus, the proposed map-
pings and their resulting spatial power patterns can
be evaluated in terms of any of these parameters.
In this study, we evaluate these mappings in terms
of temperature. Temperature is a crucial parame-
ter that has a direct effect on the reliability of VLIS
systems. Increased temperature is associated with
higher leakage and power density and is a direct re-
sult of smaller technology node and faster switching
frequencies. This problem is an alerting one and the

thermal challenge is a top priority for VLSI designers
[9, 40].

Fig.s 9 and 10 show examples of the resulting spa-
tial thermal distribution of the proposed mapping
strategies. Fig. 9 compares the spatial thermal distri-
bution for the four mapping techniques of the AMI49
benchmark. Results are shown for the good compro-
mise Pareto point. All the three MO mappings re-
sulted in lower peak temperature, Tmax and spatial
range of temperature, ∆T , when compared with sin-
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Mapping Ccost Power Comp. w.
Technique [MB] values [w] S.O.[%]

Ppeak Prange Ccost

r
e
a
l

b
e
n

c
h

m
a
r
k
s

AMI25

PR-COM 11573.05 0.92 0.69 -18.43
PP-COM 8959.79 0.94 0.87 +5.36
DP-COM 10559.64 0.94 0.87 -10.61
SO-COM 9439.77 0.99 0.92 -

AMI49

PR-COM 22994.27 0.70 0.45 -17.70
PP-COM 19597.28 0.72 0.63 -3.43
DP-COM 21959.35 0.81 0.76 -13.82
SO-COM 18925.27 0.82 0.77 -

TELE

PR-COM 2886.01 0.49 0.38 -18.85
PP-COM 2276.01 0.50 0.47 +2.90
DP-COM 2525.99 0.49 0.46 -7.29
SO-COM 2341.95 0.49 0.46 -

MPEG4

PR-COM 11457.50 2.57 2.33 -36.79
PP-COM 7037.02 2.57 2.57 +2.91
DP-COM 10260.49 2.57 2.57 -29.42
SO-COM 7242.02 2.57 2.57 -

sy
n
th

e
ti

c
b

e
n

c
h

m
a
r
k
s

DAG01

PR-COM 11358.24 0.90 0.74 -20.96
PP-COM 9728.99 0.90 0.89 -7.72
DP-COM 10220.94 0.90 0.84 -12.16
SO-COM 8977.95 0.96 0.95 -

DAG02

PR-COM 35769.89 1.09 0.65 -15.15
PP-COM 33700.28 1.07 0.93 -9.94
DP-COM 32747.71 1.14 0.87 -7.32
SO-COM 30350.87 1.17 1.09 -

DAG03

PR-COM 32507.36 1.09 0.71 -13.69
PP-COM 28448.65 1.09 0.93 -1.38
DP-COM 32198.30 1.18 0.99 -12.86
SO-COM 28056.37 1.25 1.12 -

DAG04

PR-COM 18647.88 0.82 0.46 -5.31
PP-COM 17105.90 0.82 0.68 +3.23
DP-COM 17862.13 0.87 0.73 -1.14
SO-COM 17658.59 0.96 0.84 -

AVERAGE

PR-COM -18.36
PP-COM -1.01
DP-COM -11.83

Table 3: Power pattern evaluation results

gle objective (SO-COM). The reduction in peak tem-
perature is roughly the same (approximately 2Co)
with DP-COM having slightly less peak temperature
compared with PP-COM and PR-COM. PR-COM
gives the best results in terms of thermal balancing
(the lowest ∆T ).

Fig. 10 shows the spatial thermal patterns of SO-
COM mapping with three points selected from the
Pareto front of DP-COM mapping. These points are
A, B and C in Fig. 5(c). The Parto point with the

Mapping Temp. Comp. w.
Technique values [Co] S.O.[%]

∆T Tmax ∆T Tmax

r
e
a
l

b
e
n

c
h

m
a
r
k
s

AMI25

PR-COM 10.44 62.27 35.82 4.51
PP-COM 12.94 63.34 9.58 1.59
DP-COM 11.49 61.48 23.41 6.77
SO-COM 14.18 63.95 - -

AMI49

PR-COM 9.75 63.58 38.36 3.86
PP-COM 11.82 63.43 14.13 4.27
DP-COM 11.64 63.41 15.89 4.32
SO-COM 13.49 65.07 - -

TELE

PR-COM 4.98 52.55 24.90 0.65
PP-COM 5.96 52.54 4.36 0.69
DP-COM 5.22 52.08 19.16 2.40
SO-COM 6.22 52.73 - -

MPEG4

PR-COM 29.36 80.96 14.13 1.07
PP-COM 32.04 80.89 4.59 1.20
DP-COM 29.27 78.42 14.49 5.88
SO-COM 33.51 81.56 - -

sy
n
th

e
ti

c
b

e
n

c
h

m
a
r
k
s

DAG01

PR-COM 11.82 61.97 12.52 1.16
PP-COM 12.91 61.62 3.02 2.13
DP-COM 11.65 60.78 14.16 4.53
SO-COM 13.30 62.40 - -

DAG02

PR-COM 15.14 75.39 34.41 3.49
PP-COM 17.35 74.54 17.29 5.27
DP-COM 15.79 74.00 28.88 6.43
SO-COM 20.35 77.15 - -

DAG03

PR-COM 15.47 74.16 26.18 0.77
PP-COM 17.59 73.08 10.97 3.04
DP-COM 15.62 72.32 24.97 4.69
SO-COM 19.52 74.54 - -

DAG04

PR-COM 10.06 65.64 55.07 6.13
PP-COM 11.95 65.02 30.54 7.77
DP-COM 12.47 65.03 25.10 7.74
SO-COM 15.60 68.13 - -

AVERAGE

PR-COM 30.17 2.71
PP-COM 11.81 3.24
DP-COM 20.76 5.35

Table 4: Thermal Analysis

lowest Dpeak and highest Ccost (point A) gives the
best results in terms of ∆T and Tmax (Fig. 10(d))
and vice-versa (Fig. 10(d)). Better thermal bal-
ancing results are thus associated with higher Ccost

penalty. A good compromise between thermal bal-
ancing and Ccost can be seen in Fig. 10(c) (point B
in Fig. 5(c)).

Table 4 summarises the thermal evaluation results
of all the benchmarks. Notably, improvement for
the three MO mappings (PR-COM, PP-COM and
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DP-COM) over single-objective (SO-COM). All MO
mappings give lower Tpeak and ∆T for all the bench-
marks (real and synthetic). However, the reduction
in ∆T is more evident and is up to 30% in the case of
PR-COM. PR-COM, on average, provided the best
results in terms of thermal equalisation (lowest ∆T )
because this mapping aims at minimising power vari-
ation (Prange) which translates thermally into im-
proved thermal balancing because temperature is a
direct result of power pattern. On the other hand,
on average, the best reduction in Tmax is achieved
by the DP-COM. This finding can be explained by
the fact that temperature is highly affected by the
regional power pattern. In other words, higher tem-
perature is associated with larger hotspots and not
just higher peak power of a single tile. Minimising
Dpeak is shown to result in a scattered power pattern
(Fig. 7(d)) and produces a spatial power pattern with
scattered hotspots and smaller hotspot sizes, trans-
lating into the lowest peak temperature.

7 Conclusion and Future Work

In this paper, a new mapping strategy for mesh-
based NoC architecture is proposed. The new strat-
egy focuses on power patterns and adopts an evolu-
tionary multi-objective solution to map applications
to mesh-based NoC architecture. Although the ma-
jority of mapping algorithms focus on reducing the
communication cost (placing tasks with high commu-
nication bandwidth closer to each other) to reduce
energy consumption and improve performance, the
proposed mapping strategy investigates the result-
ing power patterns and their footprints. We define
three different power pattern metrics (power peak,
power range, and regional power density) and in-
vestigate the results of using them as mapping ob-
jectives together with communication cost. Further-
more, a case study of thermal analysis of the resulting
power patterns is performed. Results show that us-
ing communication cost only produces larger hotspot
regions which translates into higher-temperatures.
Results also show that using power density metrics
in a multi-objective evolutionary mapping results-in
Pareto fronts with different power patterns and fea-

tures. In terms of thermal analysis, we found that
using power range produces a more balanced ther-
mal distribution and that minimising regional den-
sity produces the lowest peak of temperature thanks
to the resulting sparsity of hotspots. This study ex-
plores new design objectives and the resulting power
patterns can be evaluated in terms of other metrics
such as permanent and transient faults, power supply
noise and timing variation which will be investigated
in future work. Future work will also explore differ-
ent NoC architectures and routing algorithms such as
adaptive and semi-adaptive routing.
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