skip to main content
10.1145/1005285.1005310acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

On reducing a system of equations to a single equation

Published: 04 July 2004 Publication History

Abstract

For a system of polynomial equations over Q;p; we present an efficient construction of a single polynomial of quite small degree whose zero set over Q;p; coincides with the zero set over Q;p; of the original system. We also show that the polynomial has some other attractive features such as low additive and straight-line complexity.The proof is based on a link established here between the above problem and some recent number theoretic result about zeros of p-adic forms.

References

[1]
Y. Alemu, 'On zeros of forms over local fields', Acta Arithm., 45 (1985), 163--171.
[2]
G. I. Arkhipov and A. A. Karatsuba, 'On a problem in the theory of congruences', Uspechi Mat. Nauk, 37 (1981), 161--162 (in Russian).
[3]
G. I. Arkhipov and A. A. Karatsuba, 'On the local representation of zero by a form', Izv. Akad Nauk USSR, 19 (1982), 231--240 (in Russian).
[4]
M. Ben-Or and M. Tiwari, 'A deterministic algorithm for sparse multivariate polynomial interpolation', Proc. 20th ACM Symp. on Theor. Comp. Sci., 1988, 301--309.
[5]
J. Browkin, 'On systems of congruences', Bull. of the Polish Acad. Sci., 31 (1983), 219--226.
[6]
J. Brownawell, 'On p-adic zeros of forms', J. Number Theory, 18 (1984), 342--349.
[7]
P. Burgisser, M. Clausen and M. A. Shokrollahi, Algebraic complexity theory, Springer-Verlag, Berlin, 1996.
[8]
J. F. Buss, G. S. Frandsen and J. O. Shallit, 'The computational complexity of some problems of linear algebra', J. Comp. and Syst. Sci., 58 (1999), 572--596.
[9]
M. Clausen, A. Dress, J. Grabmeier and M. Karpinski, 'On zero testing and interpolation of k-sparse multivariate polynomials over finite field', Theor. Comp. Sci., 84 (1991), 151--164.
[10]
D. Grigoriev, 'Lower bounds in the algebraic computational complexity', Zapiski Nauchn. Semin. Leningr. Otdel. Matem. Inst. Acad. Sci. USSR, 118 (1982), 25--82 (in Russian).
[11]
D. Grigoriev and M. Karpinski, 'Algorithms for sparse rational interpolation', Proc. Intern. Symp. on Symbolic and Algebraic Comp., 1991, 7--13.
[12]
D. Grigoriev and M. Karpinski, 'A zero-test and an interpolation algorithm for the shifted sparse polynomials', Lect. Notes in Comp. Sci., 673 (1993), 162--169.
[13]
D. Grigoriev, M. Karpinski and M. Singer, 'Fast parallel algorithm for sparse multivariate polynomials over finite fields', SIAM J. Comput., 19 (1990), 1059--1063.
[14]
D. Grigoriev, M. Karpinski and M. Singer, 'Computational complexity of sparse rational interpolation', SIAM J. Comput., 23 (1994), 1--11.
[15]
M. Karpinski, A. van der Poorten and I. E. Shparlinski, 'Zero testing of p-adic and modular polynomials', Theor. Comput. Sci., 233 (2000), 309--317.
[16]
M. Karpinski and I. E. Shparlinski, 'On some approximation problems concerning sparse polynomials over finite fields', Theor. Comp. Sci., 157 (1996), 259--266.
[17]
A. G. Khovanski, Fewnomials, Amer. Math. Soc., Providence, 1991.
[18]
D. J. Lewis and H. L. Montgomery, 'On zeros of p-adic forms', Michigan Math. J., 30 (1983), 83--87.
[19]
Li L. Lipshitz, 'P-adic zeros of polynomials', J. Reine Angew. Math., 390 (1988), 208--214.
[20]
R. Lipton and N. Vishnoi, 'Deterministic identity testing for multivariate polynomials', Proc. 14th ACM-SIAM Symp. on Discr. Algorithms, ACM, 2003, 756--760.
[21]
J.-J. Risler, 'Khovansky's theorem and complexity theory', Rocky Mountain J. Math., 14 (1984), 851--853.
[22]
J.-J. Risler, 'Additive complexity of real polynomials', SIAM J. Comp., 14 (1985), 178--183.
[23]
J. M. Rojas, 'Additive complexity and p-adic roots of polynomials', Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 2369 (2002), 506--516.
[24]
J. M. Rojas, 'Arithmetic multivariate Descartes' rule', Amer. J. Math., 126 (2004) 1--30.
[25]
R. M. Roth and G. M. Benedek, 'Interpolation and approximation of sparse multivariate polynomials over GF(2)', SIAM J. Comp. 20 (1991), 291--314.
[26]
W. M. Schmidt, 'The solubility of certain p-adic equations', J. Number Theory, 19 (1984), 63--80.
[27]
I. E. Shparlinski, 'Sparse polynomial approximation in finite fields', Proc. 33rd ACM Symp. on Theory of Comput., ACM, 2001, 209--215.
[28]
K. Werther, 'The complexity of sparse polynomials interpolation over finite fields', Appl. Algebra in Engin., Commun. and Comp., 5(1994), 91--103.
[29]
R. Zippel, Effective polynomial computation, Kluwer Acad. Publ., Dordrecht, 1993.

Index Terms

  1. On reducing a system of equations to a single equation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '04: Proceedings of the 2004 international symposium on Symbolic and algebraic computation
    July 2004
    334 pages
    ISBN:158113827X
    DOI:10.1145/1005285
    • General Chair:
    • Josef Schicho
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 July 2004

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tag

    1. system of equations

    Qualifiers

    • Article

    Conference

    ISSAC04
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 265
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media