skip to main content
article

Supra-threshold control of peripheral LOD

Published: 01 August 2004 Publication History

Abstract

Level of detail (LOD) is widely used to control visual feedback in interactive applications. LOD control is typically based on perception at threshold -- the conditions in which a stimulus first becomes perceivable. Yet most LOD manipulations are quite perceivable and occur well above threshold. Moreover, research shows that supra-threshold perception differs drastically from perception at threshold. In that case, should supra-threshold LOD control also differ from LOD control at threshold?In two experiments, we examine supra-threshold LOD control in the visual periphery and find that indeed, it should differ drastically from LOD control at threshold. Specifically, we find that LOD must support a task-dependent level of reliable perceptibility. Above that level, perceptibility of LOD control manipulations should be minimized, and detail contrast is a better predictor of perceptibility than detail size. Below that level, perceptibility must be maximized, and LOD should be improved as eccentricity rises or contrast drops. This directly contradicts prevailing threshold-based LOD control schemes, and strongly suggests a reexamination of LOD control for foveal display.

Supplementary Material

MOV File (pps066.mov)

References

[1]
ANSTIS, S. 1986. Motion Perception in the Frontal Plane. Boff, K., Kaufmann, L. & Thomas, J. (eds.), Handbook of Human Perception & Performance, I, John Wiley & Sons., 16-1--16-27.
[2]
BARRETTE, R. E. 1986. Flight Simulator Visual systems - an Overview. Proc. Soc. Automotive Eng. Conf. Aerospc. Behav. Eng. Tech., 193--198.
[3]
BLAKEMORE, C., MUNCEY, J. P. J. & RIDLEY, R. M. 1973. Stimulus Specificity in the Human Visual System. Vision Rsrch., 13, 1915--1931.
[4]
BOLIN, M. & MEYER, G. 1998. A Perceptually Based Adaptive Sampling Algorithm. Proc. ACM SIGGRAPH, 299--309.
[5]
BONNEH, Y. & SAGI, D. 1998. Effects of Spatial Configuration on Contrast Detection. Vision Rsrch., 38, 3541--3553.
[6]
BONNEH, Y. & SAGI, D. 1999. Contrast Integration Across Space. Vision Rsrch., 39, 2597--2602.
[7]
CANNON, M. W. 1985. Perceived Contrast in the Fovea and Periphery. J. Optical Soc. Am. A, 2, 10, 1760--1768.
[8]
CARRASCO, M. & FRIEDER, K. 1997. Cortical Magnification Neutralizes the Eccentricity Effect in Visual Search. Vision Rsrch., 37, 63--82.
[9]
CHANDLER, D. M. & HEMAMI, S. S. 2002. Additivity Models for Suprathreshold Distortion Quantized Wavelet-Coded Images. Proc. SPIE Human Vision & Electronic Imaging, 4662, 105--118.
[10]
CHANDLER, D. M. & HEMAMI, S. S. 2003. Suprathreshold Image Compression Based on Contrast Allocation and Global Precedence. Proc. SPIE Human Vision & Electronic Imaging, 5007, 73--86.
[11]
VAN DIEPEN, P. M. J., RUELENS, L. & D'YDEWALLE, G. 1999. Brief Foveal Masking During Scene Perception. Acta Psychologica, 101, 91--103.
[12]
VAN DIEPEN, P. M. J. & WAMPERS, M. 1998. Scene Exploration with Fourier-Filtered Peripheral Information. Perception, 27, 1141--1151.
[13]
ELMES, D. G., KANTOWITZ, B. H., & ROEDIGER, H. L. 2003. Research Methods in Psychology, 7th ed. Thomson Wadsworth.
[14]
FERNIE, A. 1995. Helmet-Mounted Display with Dual Resolution. J. Soc. for Information Display, 3, 4, 151--153.
[15]
FERWERDA, J. A., RUSHMEIER, H. & WATSON, B. A. 2002. Psychometrics 101: How to Design, Conduct, and Analyze Perceptual Experiments in Computer Graphics. ACM SIGGRAPH Course 58 Notes.
[16]
FREDERICKSEN, R. E. & HESS, R. F. 1997. Temporal Detection in Human Vision: Dependence on Stimulus Energy. J. Optical Soc. Am. A, 14, 2557--2569.
[17]
FREDERICKSEN, R. E. & HESS, R. F. 1999. Temporal Detection in Human Vision: Dependence on Spatial Frequency. J. Optical Soc. Am. A, 16, 2601--2611.
[18]
FUNKHOUSER, T. & SÉÉQUIN, C. 1993. Adaptive Display Algorithm For Interactive Frame Rates During Visualization Of Complex Virtual Environments. Proc. ACM SIGGRAPH, 247--254.
[19]
GEISLER, W. S. & CHOU, K.-L. 1995. Separation of Low-Level and High-Level Factors in Complex Tasks: Visual Search. Psych. Review, 102, 356--378.
[20]
GEORGESON, M. A. & SULLIVAN, G. D. 1975. Contrast Constancy: Deblurring in Human Vision by Spatial Frequency Channels. J. Physiology (London), 252, 627--656.
[21]
GRAHAM, N. 1989. Visual Pattern Analyzers. Oxford University Press.
[22]
VAN DE GRIND, W. A., KOENDERINK, J. J. & VAN DORN, A. J. 1986. The Distribution of Human Motion Detector Properties in the Monocular Visual Field. Vision Rsrch., 26, 797--810.
[23]
VAN DE GRIND, W. A., KOENDERINK, J. J. & VAN DORN, A. J. 2000. Motion Detection From Photopic to Low Scotopic Luminance Levels. Vision Rsrch., 40, 187--199.
[24]
HOWLETT, E. 1992. High-Resolution Insets in Wide-Angle Head-Mounted Stereoscopic Displays. Proc. SPIE Stereoscopic Displays & Applications, 1669, 193--203.
[25]
KELLY, D. H. 1979. Motion and Vision. II. Stabilized Spatio-Temporal Threshold Surface. J. Optical Soc. Am., 69, 1340--1349.
[26]
KELLY, D. H. 1984. Retinal Inhomogeneity. I. Spatiotemporal Contrast Sensitivity. J. Optical Soc. Am. A, 1, 107--113.
[27]
KESSLER, G. D., BOWMAN, D. A. & HODGES, L. F. 2000. The Simple Virtual Environment Library, an Extensible Framework for Building VE Applications. Presence, 9, 2, 189--208.
[28]
KOENDERINK, J. J., BOUMAN, M. A., BUENO DE MESQUITA, A. E. & SLAPPENDEL, S. 1978. Perimetry of Contrast Detection Thresholds of Moving Spatial Sine-Wave Patterns. J. Optical Soc. Am., 68, 845--865.
[29]
KULIKOWSKI, J. J. 1976. Effective Contrast Constancy and Linearity of Contrast Sensation. Vision Rsrch., 16, 1419--1431.
[30]
LIVERSEDGE, S. P. & FINDLAY, J. M. 2000. Saccadic Eye Movements and Cognition. Trends in Cognitive Sciences, 4, 1, 6--14.
[31]
VAN LOON, E. M., HOOGE, I. TH. C. & VAN DEN BERG, A. V. 2003. Different Visual Search Strategies in Stationary and Moving Radial Patterns. Vision Rsrch., 43, 1201--1209.
[32]
LUEBKE, D. & HALLEN, B. 2001. Perceptually Driven Simplification for Interactive Rendering. Proc. Eurographics Rendering Wkshp., 223--234.
[33]
LUEBKE, D., REDDY, M. COHEN, J., VARSHNEY, A., WATSON, B. A. & HUEBNER, R. 2003. Level of Detail for 3D Graphics, Morgan Kaufman.
[34]
MCKEE, S. P. & NAKAYAMA, K. 1984. The Detection of Motion in the Peripheral Visual Field. Vision Rsrch., 24, 25--32.
[35]
MCKEE, S. P., SILVERMAN, G. H. & NAKAYAMA, K. 1986. Precise Velocity Discrimination Despite Random Variations in Temporal Frequency and Contrast. Vision Rsrch., 26, 609--619.
[36]
NAKAYAMA, K. & SILVERMAN, G. H. 1985. Detection and Discrimination of Sinusoidal Grating Displacements. J. Optical Soc. Am. A, 2, 267--274.
[37]
NIEMANN, T. & HOFFMAN, K.-P. 1997. Motion Processing for Saccadic Eye Movements During the Visually Induced Sensation of Ego-Motion in Humans. Vision Rsrch., 37, 3163--3170.
[38]
NOTHDURFT, H.-C. 2002. Attention Shifts to Salient Targets. Vision Rsrch., 42, 1287--1306.
[39]
OHSHIMA, T., YAMAMOTO, H. & TAMURA, H. 1996. Gaze-Directed Adaptive Rendering For Interacting With Virtual Space. Proc. IEEE Virtual Reality Annual International Symp., 103--110.
[40]
PARKHURST, D. J. & NIEBUR, E. 2002. Variable-Resolution Displays: A Theoretical, Practical, and Behavioral Evaluation. Human Factors, 44, 4, 611--629.
[41]
PELI, E., AREND, L. & LABIANCA, A. T. 1996. Contrast Perception Across Changes In Luminance And Spatial Frequency. J. Optical Soc. Am. A, 13, 10, 1953--1959.
[42]
RAMASUBRAMANIAN, M., PATTANAIK, S. N. & GREENBERG, D. P. 1999. A Perceptually Based Physical Error Metric for Realistic Image Synthesis. Proc. ACM SIGGRAPH, 73--82.
[43]
RAYNER, K. 1998. Eye Movements in Reading and Information Processing: 20 Years of Research. Psych. Bulletin, 124, 372--422.
[44]
REDDY, M. 1998. Specification and Evaluation of Level of Detail Selection Criteria. Virtual Reality: Rsrch., Development & Application, 3, 2, 132--143.
[45]
ROYDEN, C. S., WOLFE, W. M. & KLEMPEN, N. 2001. Visual Search Asymmetries in Motion and Optic Flow Fields. Perception & Psychophysics, 63, 436--444.
[46]
SAIDA, S. & IKEDA, M. 1979. Useful Visual Field Size for Pattern Perception. Perception & Psychophysics, 25, 2, 119--125.
[47]
SCHARFF, L. F., HILL, A. L. & AHUMADA, A. J. 2000. Discriminability Measures for Predicting Readability of Text on Textured Backgrounds. Optics Express, 6, 81--91.
[48]
SEKULER, R., WATAMANIUK, S. N. J. & BLAKE, R. 2002. Perception of Visual Motion. In Pashler, H. (series ed.) & Yantis, S. (vol. ed.), Stevens' Handbook of Experimental Psych.: Vol. 1 Sensation & Perception, 3rd ed. J. Wiley.
[49]
SHIORI, S. & IKEDA, M. 1989. Useful Resolution for Picture Perception as a Function of Eccentricity. Perception, 18, 347--361.
[50]
SMITH, A. T. & SNOWDEN, R. J. 1994. Visual Detection of Motion. Academic Press.
[51]
SORKINE, O., COHEN-OR, D. & TOLEDO, S. 2003. High-Pass Quantization For Mesh Encoding. Proc. Eurographics/ACM SIGGRAPH Symp. Geometry Processing, 42--51.
[52]
TREISMAN, A. & GELADE, G. 1980. A Feature-Integration Theory of Attention. Cognitive Psych., 12, 97--136.
[53]
TURANO, K. & PANTLE, A. 1989. On the Mechanism That Encodes the Movement of Contrast Variations: Velocity Discrimination. Vision Rsrch., 29, 207--221.
[54]
TYNAN, P. & SEKULER, R. 1982. Motion Processing in Peripheral Vision: Reaction Time and Perceived Velocity. Vision Rsrch., 22, 61--68.
[55]
VOLEVICH, V., MYSZKOWSKI, K., KHODULEV, A. & KOPYLOV, E. 2000. Using the Visual Difference Predictor to Improve Performance of Progressive Global Illumination Computation. ACM Trans. Graphics, 19, 2, 122--161.
[56]
WATSON, A. B. & AHUMADA, A. J. 1985. Model of Human Visual-Motion Sensing. J. Optical Soc. Am. A, 2, 322--342.
[57]
WATSON, A. B. & TURANO, K. 1995. The Optimal Motion Stimulus. Vision Rsrch., 35, 325--336.
[58]
WATSON, B. A., WALKER, N. & HODGES, L. F. 1997. Managing Level of Detail Through Head-Tracked Peripheral Degradation: a Model and Resulting Design Principles. Proc. ACM Virtual Reality Software Technology, 59--64.
[59]
WATSON, B. A., WALKER, N., RIBARSKY, W. R. & SPAULDING, V. 1998. The Effects of Variation in System Responsiveness on User Performance in Virtual Environments. Human Factors, 40, 3, 403--414.
[60]
WATSON, B. A., WALKER, N., HODGES, L. F. & WORDEN, A. 1997. Managing Level of Detail Through Peripheral Degradation: Effects on Search Performance with a Head-Mounted Display. ACM Trans. Computer-Human Interaction, 4, 4, 323--346.
[61]
YOSHIDA, A., ROLLAND, J. & REIF, J. 1995. Design and Applications of a High-Resolution Insert Head-Mounted-Display. Proc. Virtual Reality Annual International Symp., 84--93.

Cited By

View all
  • (2022)Adaptive Foveated Ray Tracing Based on Time-Constrained Rendering for Head-Mounted DisplayJournal of the Korea Computer Graphics Society10.15701/kcgs.2022.28.3.11328:3(113-123)Online publication date: 25-Jul-2022
  • (2021)Selective Foveated Ray Tracing for Head-Mounted Displays2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)10.1109/ISMAR52148.2021.00058(413-421)Online publication date: Oct-2021
  • (2021)An integrative view of foveated renderingComputers & Graphics10.1016/j.cag.2021.10.010Online publication date: Oct-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 23, Issue 3
August 2004
684 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1015706
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2004
Published in TOG Volume 23, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. human factors
  2. level of detail
  3. perception
  4. peripheral visual sensitivity
  5. supra-threshold visual sensitivity

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Adaptive Foveated Ray Tracing Based on Time-Constrained Rendering for Head-Mounted DisplayJournal of the Korea Computer Graphics Society10.15701/kcgs.2022.28.3.11328:3(113-123)Online publication date: 25-Jul-2022
  • (2021)Selective Foveated Ray Tracing for Head-Mounted Displays2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)10.1109/ISMAR52148.2021.00058(413-421)Online publication date: Oct-2021
  • (2021)An integrative view of foveated renderingComputers & Graphics10.1016/j.cag.2021.10.010Online publication date: Oct-2021
  • (2020)Perceptual Model based Surface Tessellation for VR Foveated RenderingProceedings of the 6th International Conference on Robotics and Artificial Intelligence10.1145/3449301.3449313(64-68)Online publication date: 20-Nov-2020
  • (2019)Fast calculation method with foveated rendering for computer-generated holograms using an angle-changeable ray-tracing methodApplied Optics10.1364/AO.58.00A25858:5(A258)Online publication date: 8-Feb-2019
  • (2018)Perceptual model optimized efficient foveated renderingProceedings of the 24th ACM Symposium on Virtual Reality Software and Technology10.1145/3281505.3281588(1-2)Online publication date: 28-Nov-2018
  • (2017)Perception-driven Accelerated RenderingComputer Graphics Forum10.1111/cgf.1315036:2(611-643)Online publication date: 1-May-2017
  • (2016)Foveated Real-Time Ray Tracing for Head-Mounted DisplaysComputer Graphics Forum10.5555/3151666.315169635:7(289-298)Online publication date: 1-Oct-2016
  • (2016)Foveated Real‐Time Ray Tracing for Head‐Mounted DisplaysComputer Graphics Forum10.1111/cgf.1302635:7(289-298)Online publication date: 27-Oct-2016
  • (2013)Evaluation of Optimized Visualization of LiDAR Point Clouds, Based on Visual PerceptionHuman-Computer Interaction and Knowledge Discovery in Complex, Unstructured, Big Data10.1007/978-3-642-39146-0_35(366-385)Online publication date: 2013
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media