
Energy-Eff icient Flash-Memory Storage Systems
with an Interrupt-Emulation Mechanism*

Chin-Hsien Wu, Tei-Wei Kuo, and Chia-Lin Yang
{d90003, ktw, yangc} Qcsie.ntu.edu.tw

Department of Computer Science and Information Engineering
National Taiwan University Taipei, Taiwan, 106

ABSTRACT
One of the emerging critical issues for Rash-memory storage
systems, especially on the implementations of many embed-
ded systems, is on its programmed 110 nature for data trans-
fers. Programmed-110-based data transfers might not only
result in the wasting of valuable CPU cycles of microproces-
sors but also unnecessarily consume much more energy from
batteries. This paper presents an interrupt-emulation mech-
anism for flash-memory storage systems with an energy-
efficient management strategy. We propose to revise the
waiting function in the Memory-Technology-Device (MTD)
layer to relieve the microprocessor from busy waiting and
to reduce the energy consumption of the system. We show
that energy consumption could he significantly reduced with
good saving on CPU cycles and minor delay on the average
response time in the expcriments.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems; D.4.2 [Opera t ing Sys-
tems]: Secondary storage; B.3.2 [Memory Structures]:
Mass storage

General Terms
Design, Performance, Algorithm

Keywords
Flash Memory, Storage Systems, Embedded Systems, Interrupt-
Emulation 110, Energy-Efficient, Programmed 110

1. INTRODUCTION
Flash memory has been widely adopted in various plat-

forms for storage systems. Many of its usages are now well

'Supported in part by a research grant from the National
Science Council under Grant NSC 92-2213-E-002.065 and a
research grant from the Academia Sinica.

Permission to make digital or hard copies of all or pan of this work far
personal or cla~sroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear thin notice and the full citation on the first page. To copy otherwise, to
republish, to post on scmers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS'O4, September 8-10,2004, Stockholm, Sweden.
Copyright 2W ACM 1-581 13-937-3/04/0009 ... $5.00.

beyond its original designs. Application programs or operat-
ing systems on ernbedded systems usually use programmed
110 to access flash memory. Such a phenomenon might not
only result in the wasting of valuable CPU cycles of micro-
processors hut also unnecessarily consume much more en-
ergy from batteries, especially for embedded systems.

In past few years, many excellent research results have
been proposed far the performance enhancement of Rash-
memory storage systems, e.g., [l, 5, 6, 8, 9, 101. In particu-
lar, Wu, et al. proposed to adopt SRAM as write buffers and
presented several cleaning policies for garbage collection [lo].
Kawaguchi, et al. proposed the cost-benefit policy [5], which
uses a value-driven heuristic function as a block-recycling
policy. Kim, et al. 161 proposed to periodically move live
data among blocks so that blocks have more even lifetimes.
To improve the overall performance, Chang and Kuo [l] pro-
posed an adaptive striping architecture which consists of
several independent banks. While energy-efficient designs
have become an important issue on embedded systems, re-
searchers have started exploiting energy-aware designs of
flash-memory storage systems, e.g., [2, 31. In particular,
Douglis, et al. [3] provided a series of energy consumption
measurement for flash memory under different percentages
of capacity utilization.

The objective of this research is to evaluate the feasibility
and benefits of energy-efficient flash-memory storage sys-
tems with interrupt-emulation. The goal is not only to re-
lieve the microprocessor from wasting valuable CPU cycles
because of the programmed-110-based data transfers of flash
memory in many existing implementations, but also provide
an energy-efficient strategy. First, we propose an interrupt-
emulation mechanism for Rash-memory storage systems, in
which the the waiting function in the Memory-Technology-
Device (MTD) layer is revised to relieve the microprocessor
from busy waiting. Each 110 request of the flash-memory
storage system is inserted into a queue for the storage system
for scheduling, where a single task dedicated for the storage
system is responsible of scheduling and dispatching requests
and notifying the completion of each request. Furthermore,
an energy-efficient strategy is presented for multi-hank flash-
memory storage systems, especially on when to switch the
power state of each flash-memory bank. We show that en-
ergy consumption could be significantly reduced, and much
saving on CPU cycles could be achieved. In the experiments,
i t was also observed that only minor delay on the average
response time of 110 requests in realistic traces.

The rest of this paper is organized as follows: Section 2
provides an overview of flash memory. Section 3 introduces

I34

the interrupt-emulation mechanism. Section 4 provides an
energy-efficient strategy based on the interrupt-emulation
mechanism. Section 5 shows experimental results. Section
6 is the conclusion.

2. FLASH-MEMORY CHARACTERISTICS
NAND flash memory is popular in the markets and con-

sidered for storage systems designs. NAND flash-memory
might consist of multiple hanks, and each bank is a flash
unit that could operate independently. Each bank is par-
titioned into blocks, where each block is of a fixed number
of pages. A block is the smallest unit of an erase opera-
tion, while read and write operations are handled by pages.
The typical block size and page size are 16KB and 512B,
respectively. Because of the hardware characteristics, data
could not he overwritten over pages on updates. Instead,
data must be written to some free space. The update strat-
egy is called "out-place update". Pages that store the most
recent versions are called "live pages", and pages that store
old versions are called "dead pages".

Because of the out-place update strategy, a dynamic ad-
dress translation mechanism is needed to map a given LBA
(logical block address) to the physical address where the
valid data reside. To accomplish this objective, a RAM-
resident translation table is adopted. The translation table
is indexed by LBA, and each entry of the table contains
the physical address of the corresponding LBA. Each entry
in the table is a triple (bank-num, block.nam, page-num)
indexed by LBA, where each triple of an LBA indicates
its corresponding hank number bank-num, block number
blocknum; and page number p a g e n a m .

After a certain number of page writes, the amount of free
space on flash memory would be low. Activities that consist
of a series of reads, writes, and erases with the intention
to reclaim free spaces would then start. The activities are
called "garbage collection" and considered as overheads in
flash-memory management. The objective of garbage col-
lection is to recycle dead pages scattered over blocks so that
they could become free pages after erasing.

3. AN INTERRUPT-EMULATION MECHA-
NISM FOR FLASH-MEMORY STORAGE
SYSTEMS

3.1 System Architecture

Table 1: NAND-Flash Performance fSamsune
K9F6408UOA 8MB NAND flash memory j

The setuolhusv Dhase of read I 27/25
Phase I Interval (ps)

., I I

The setup/busy phase of write i
The setup/busy phase of erase 1

27j350
31/2500

Due to the hardware characteristics of flash memory, ap-
plication programs or operating systems on many embedded
systems must use programmed 110 t o access flash memory.
The operation model of NAND flash, in general, consists of
two phases: setup and busy phases. For example, the first
phase (called "setup" phase) of a write operation is for com-
mand setup and data transfer. The command, the address,

and the data are written to proper registers of flash mem-
ory in order. The second phase (called "busy" phase) is for
busy-waiting of the data being flushed into flash memory.
The operation of reads is similar to that of writes, except
that the sequence of data transfer and busy-waiting is in-
verted. The phases of an erase is as the same as those of
a write, except that no data transfer is needed in the setup
phase. Note that writes and erases are time consuming, and
most of the time is spent in the busy phase, where busy
waiting occurs. The performance of NAND flash memory is
summarized in Table 1.

Figure 1: System Architecture

The system architecture of a flash-memory storage system
consists of two layers, as shown in Figure 1. They are the
Flash Translation Layer (FTL) and the Memory Technologv
Device (MTD) layer. The file systems layer is over the flash-
memory storage system to provide a logical file interface
for applications. FTL provides block-device emulation for
transparent access from file systems without any modifica-
tions to existing file-system implementations [12]. Garbage
collection, and address translation are handled in FTL. The
MTD layer provides handling routines for read, write and
erase operations, between devices (e.g., flash memory) and
an upper layer (e.g., FTL) [ll].

In this paper, we propose to provide an 1/0 request model
for interrupt emulation (Please see Section 3.2.1) and to re-
vise the waiting function in the MTD layer to relieve the
microprocessor from busy waiting (Please see Section 3.2.2).
In the MTD layer, we will present an energy-efficient strat-
egy for multi-bank flash memory (Please see Section 4), es-
pecially on when to switch the power state of each flash-
memory bank.

3.2 System Design

3.2.1 An U0 Request Model for an Interrupt-Emulation
Mechanism

An 110 request could be modelled by a tuple (P I D , topi, . . . ,
op,}), where P I D denotes the ID of the process that issues
the operations in the ordered list { o p ~ , . . . , op,}. Each el-
ement in the ordered list lop,, . . . , opn} that represents an
operation over the flash-memory storage system, such as a
read, a write, and an erase, must he executed according
to its index order in the list. For example, an operation
op, could be (READ, (bank,, block,, page ,) , read-data),
(WRITE, (bank,, block,, pagei), write-data), or (ERASE,

S C H E D UL lN G:

DISPATCHING
Schedule 110 requests of the U0 queue aceording to some criteria

for each U0 q u e s t R in the U0 queue do
for each operation op in R do

Executeop //&tup Phare
ifvpisawtileoranerascthan

end if
The MTD dispatcher invokes a waiting function IISusy Pharr

end for
I* NOTIFYING V
The MTE dispatcher rc~umcs the corresponding VO-questing pmess of R

end for

Figure 2: The MTD dispatcher

(bank,, block;)), where bank;, blocki, and page, represent
the bank number, the block number, and the page number
of the corresponding operation, respectively. When a prw
cess invokes an 110 system call, such as fwrite() or fread(),
the file system might issue one or more requests to FTL to
access data in the flash memory. FTL would then issue one
or more 110 requests to the MTD layer.

An 110 queue is provided in the MTD layer for inter-
rupt emulation and energy-efficient design (Please see Sec-
tion 4). Each 110 request received by the MTD layer is
inserted into the 110 queue and wait for the dispatching to
the flash memory. 110-requesting processes would suspend
themselves when their 110 requests are inserted into the 110
queue. A system task, referred to as the M T D dispatcher,
dispatches the first 110 request in the queue, and would
invoke a waiting function to enter the busy phase if the o p
eration of the 110 request is a write or an erase (Please see
Section 3.2.2). When an I f 0 request completes, the MTD
dispatcher would resume the corresponding process. The
work of the MTD dispatcher is summarized in Figure 2.

3.2.2 The Design of the Waiting Function

In*oklhirnunghllxuan,ti"8f"~tim f ,wok Uxruunlfundrn

ScwpPhlx B m y k

/c
Sclvpphav Busyphav

Emsmg ofa blmk-

Figure 3: TWO phases of a flash-memory ope ra t ion

A waiting function is supposed to be invoked in the busy
phase of a write or an erase, as shown in Figure 3. In the
current MTD layer implementation, the waiting function is
invoked to yield the CPU to other processes because the
busy phase of a write or an erase is time-consuming, as
shown in Function 1 in Figure 4. The invocation of yield()
would virtually move the 110-requesting process (in fact, it
is the operating system running on behalf of the process)
to the ready queue. If the 110-requesting process that in-
vokes yield() has the highest priority among ready processes
in the ready queue of the operating system, then the 110-
requesting process would be dispatched such that it invokes
yield() again, and the procedure repeats for the "timeout"
period of time. Because the I/O-requesting process tends
to be the highest priority process, such a behavior could be

considered as a variation of programmed 110. It might not
only result in the wasting of valuable CPU cycles but also
unnecessarily consume much more energy from batteries, es-
pecially for embedded systems. Note that no invocation of
the waiting function is done for reads because their busy
phase is short.

Function 1 The original waiting function

Input 2." operation o p : a write o r a" erase
i f op is 1 write ,hen

timeout = the time o f the busy phase for the writing o f n page

timeoul= the lime o f the busy phase for the errsing o f r block
else if o p is an erase then

end if
while timeout is valid do

if op finishes then

else

end if
end while
if o p fails then

end if

return

yield0 (the flash memory is busy in the busy phase)

verify the status of the operation o p

Function 2 The proposed waiting function

Input a" operation op : a write or a" erase
if up is 61 write then

else if op is an erase then
timeout = the time o f the bury phnie for the writing of r page

limeout = the time of the busy phase for the erasing of a block
-"A I, ..
rleep(timeouf) (the flash memory is busy in the busy phase)
if op finisher then

rerum
end if
ifop fails then

mn if
verify the statui of the operation op

Figure 4 Wait ing Funct ion

Different from the traditional implementations of the MTD
layer, we propose to invoke sleep() in the waiting function to
relieve the CPU from busy waiting as a part of the proposed
interrupt-emulation mechanism. As shown in Function 2 in
Figure 4, the busy-waiting whilcloop is replaced with an in-
vocation of sleep(). Such an invocation would put the MTD
dispatcher into sleep until the expiration of the "timeout"
period, and the MTD dispatcher (also referred to as the cor-
responding 110-requesting process) is moved to the waiting
queue of the operating system. When the timeout event oc-
curs, the MTD dispatcher is awaken. When all operations
in an 110 request complete, the MTD dispatcher resumes
the corresponding 110-requesting process.

Important technical questions for the proposed approach
are on the predictability of the timeout period in the wait-
ing function, the impacts o n the sustern performance, and
the potential overheads. We must point out that the access
time of flash memory has a very small variance over widely
different workloads. The average time of the busy phase for
the writing of a page (512B) was 350 f is , and that of the
erasing of a block (16KB) was 2500 ps. The variance of the
access time was roughly between 10 p s and 30 f is. There-
fore, the access time of flash memory is highly predictable.
In the experiments, we shall provide measured results for
the system performance under different timeout periods so
that users could make the best decision for their selection.
The impacts on the performance of the flash-memory stor-
age system due to the interrupt-emulation mechanism would

136

be dominated by that of the invocation of sleep() by the
MTD dispatcher and the time to suspensian/resume 110-
requesting processes (and the MTD dispatcher). We could
show in the experiments that the overheads are negligible.

4. THE ENERGY-EFFICIENT STRATEGY

4.1 Overview
In a multi-bank flash system, each bank can switch to

different power states independently. We assume a simple
power management policy that switches a hank to a low
power state (LPS) once it is idle and a high power state
(H P S) to service a request, where state switching incurs
both the performance and energy overheads. Consider a 4-
bank flash system with 4 requests in the 110 queue, as shown
in Figure 5. It requires 14 power state switchings, as shown
in Figure 5.(a). However, it requires only 6 state switch-
ings, as shown in Figure 5.(b). Based on the observation,
a scheduling strategy is needed to minimize the number of
state switchings to achieve energy saving.

LPSi3 .4 L P s : 1 4
LPS: LA LPS: i.2
HPS: 1.4 HPS: 3 4

<a, For 110 REqueSls Wilh0"I <b, For 110 Rcquesls With
Ssheduling Scheduling

Figure 5: Reordering of Requests

DEFINITION 1. The Schedulzng Problem of I /O Requests:
Given a collection T of 110 requests, and a cost vector
C(r,,r,) for any r, and r, E T , the scheduling problem of
110 requests is to find an execution order of T such that the
total cost is minimum.

C(r,, 7,) represents the number of power state switchings
required, i.e., C(r,, 7,) = IBank,I + IBank,I - 2 t (IBank, n

could be found in an off-line fashion. We referred interesting
readers to 1131 for optimal solution using Branch and Bound.

For'the Lesi of this section, we shallfirst address the de-
pendency issues of requests to ensure the correctness of a
program execution. We will then present two scheduling
heuristics for request scheduling (instead of those based on
a pre-determined preferred order). Their performance eval-
uation will be included in Section 5.2.

_ .
Binkjl); where Ba& and Bank, denote two sets'of banks
that r, and r, access, respectively.

The complexity in solving the scheduling problem of 110
requests depends on the number of combinations of banks,
instead of the number of requests in general. Since the
number of hanks in many current implementations is very
limited, we can either find out the best ordering of bank
combinations or run approximation algorithms in the min-
imization of state switchings. For example, when there
are 4 banks in a system, there are 15 bank combinations:
{(1),(2),(3),(4),(1,2), (L3L (1,4),(2,3),(2,4),(3,4), (1,2,3),
(1 ,3 ,4) , (2,3,4), (1,2,3,4)}. We first come out a preferred
order of requests in the 15 bank combinations. When re-
quest scheduling is needed, we always schedule requests in
the same bank combination together and schedule requests
in bank combinations according to a pre-determined pre-
ferred bank-combination order. Note that a preferred order

~

137

4.2 Scheduling Issues on Dependency
Relations

There are three types of operations over the flash memory:
read, write and erase. At the MTD layer, each operation in
a request is associated with a physical block address (PBA).
There could he access conflicts among operations on their
physical block addresses. We say that two requests R, and
R, conflict with each other if R, and RI satisfy any of the
following conditions:

1. There exist one operation in R; and one in R; such
that the two operations have the same PBA, and one
of them is a write operation (or both are write opera-
tions).

2. There exist one operation in R, and one in R, such
that one of the two operations is an erase operation,
and the other is a read or write operation with a PBA
inside the block to be erased by the erase operation.

For any two conflicting requests, their order is, in fact,
not changeable; otherwise, the contents of the Rash memory
could be different after the reordering of 110 requests or
wrong situations could happen. As a result, 110 requests in
the 110 queue are partitioned into two sets: requests with
conflicting operations and requests without any conflicting
operations. The MTD dispatcher services all requests with
conflicting operations first and services all requests without
any conflicting operations in an order determined by the
following scheduling algorithms.

4.3 Approximation Algorithms
The purpose of this section is to present two algorithms for

the scheduling of non-conflicting requests: A TSPP-based
algorithm with an approximation bound and a greedy alg-
rithm. The performance evaluation of the algorithms will
be reported in Section 5.2. Before the presentation of the
TSPP-based scheduling algorithm, we shall first prove the
triangle inequality property for the cost vector:

LEMMA 1. C(r2,rj) satisfies triangle inequality i f all I /O
requests are non-conflicting requests. That is, C(ri,r3) +
C(r j , rk) 2 C(r;,rk) for any r;, rj, and r k E a collection of
non-conflicting requests T .

2r(IBankinBankjl))+(IBanlejI+/BankkI - 2 * (I B a n k , n
Banks)I)- (IBankil+lBankbI-2+(IBankinBankbI))=2*lBanle,I-
2*(IBankinBankjI+IBanlc3nBankr,l)+ 2*IBank,nBankr,l>O.
As a result, C(r;,rJ) satisfies triangle inequality. 0

We could apply a TSPP-based approximation algorithm
on the scheduling of non-conflicting requests because the
cost vector satisfies triangle inequality (Please see to Lemma
1). TSPP is defined as follows [4]: Given a complete graph
with vertex V , and a nonnegative edge cost vector for any
edges, the travelling salesman path problem is to find a
Hamiltonian path with the minimum cost. Figure 6.(a)
shows a TSPP-based solution for the example shown in Fig-
ure 5. Each request in the scheduling problem is a node
in the TSPP instance. The number marked on the edge of
(r,, r,) corresponds to C(ri, rI). We adopt the well-known
2-approximation algorithm' in [7] because of its simplicity

'The 2-approximation algorithm mainly consists of the min-
imum spanning tree algorithm and the Eulerian tour.

Proof. c(Tt , T j) + c (T j , T k) - C (T , , T k) =(lBank,I+IBank,I-

. z

Applications

1.4 3 , 4

(a) A TSPP-based solution (b) A greedy solution

Figure 6 : Solutions based on a TSPP-based a p
proach and a greedy approach

Web Applications, E-mail Clients,
MP3 player, and Virtual Memory

in implementation. Note that when a new non-conflicting
110 request arrives for scheduling, all scheduled 110 re-
quests must be rescheduled with the new 110 request by
the TSPP-based approximation algorithm. The complex-
ity of each rescheduling is O(lVl') for the 2-approximation
algorithm.

Request scheduling could also be done by a simple and ef-
ficient heuristics, referred to as the greedy algorithm for the
rest of this paper: Let S be a schedule of all non-conflicting
pending 110 requests. When a new request arrives, the
greedy algorithm simply scans over the schedule from the
front to the end to find the best place to insert the new
request in. The selection is based on the minimization of
the final cost. For example, let r4 be a new request, and
there are four potential locations (Ll, L2, L3, or L4) for in-
sertion, as shown in Figure 6.(b). According to the greedy
algorithm, L3 and L4 would be better than L1 and L2 be-
cause of less cost. The time complexity of each rescheduling
is O(jV1).

Total Data Written
Total 110 Requests
Read J Write Ratio

Mean ReadIWrite Size

5. PERFORMANCE EVALUATION

122 MB
33,000

44% / 56%
31.3 / 16 Pages

Activities
Duration I 2 Hours -

A series of experiments was conducted on an Ah4D-Duron
(750Mhz) machine running RedHat 7.3 with the proposed
MTD layer. The performance evaluation was done over a
Cbank NAND type flash system. The size of each bank was
25MB, and the page size was 5 1 2 8 . The characteristics of
the traces are summarized in Table 2. Note that the page
allocation policy was based on the striping architecture [l].

The evaluation of the proposed energy-efficient interrupt-
emulation mechanism was done in two parts. First, we
demonstrated the capability of the interrupt-emulation mech-
anism in Section 5.1. We then showed the advantages of the
proposed method in energy-efficiency considerations.

5.1 Performance of the Interrupt-Emulation
Mechanism

Table 3: The Overheads of the Interrupt-Emulation
Mechanism

I Ave. (p s) I Deviation (ps)
Overheads of the I 20 I 10

invocation of sleep()
Overheads of the suspension 1 30 I 10

and resumption time
Overheads of I 50 I 20

each 110 request

The overheads for the supporting of the interrupt-emulation
mechanism mainly came from the invocation of sleep() by
the MTD dispatcher and the time to suspendlresume 110-
requesting processes and the MTD dispatcher. We measured
these overheads in the kernel mode for more precise results.
The results art? summarized in Table 3. We can see that
the total overheads for each 110 request is about 50 p s on
average, and the deviation for each 110 request is about 20
ps. Compared with the average service time, 2 m s and 6 rns
for readslwrites, the performance overheads (that is about
50 ps on average) from the interrupt-emulation mechanism
was reasonable.

(C)TOld C0mpimtiO"hC of4hvUPnait?
h e n e i when SW=scO and SLLIYO

(d) To3Cornpu~isonTimcafl law rho ti^
h a e s r r r h m S W ; M a a n d S ~

Figure 7: Exper imen ta l Results of the Interrupt-
Emula t ion Mechanism. (SW a n d S E denote the
t i m e o u t period of the busy phase for wri t e and erase
operat ions, respectively)

We measured the accumulated sleep time for 3 different
timeout periods, as shown in Figure 7.(a). We can see that
longer timeout periods resulted in longer sleep time as ex-
pected. During the sleep period of the h4TD dispatcher, the
microprocessor could be used by other processes thereby in-
creasing the system throughput. To quantify this effect, we
executed four additional CPU-bound processes with lower
priorities than theMTD dispatcher. The period and compu-
tation time of the four CPU-bound processes was described
in Table 4. We measured the CPU time spent on these four

138

processes with and without the interrupt-emulation mech-
anism. The results are shown in Figure7.(b), (c) and (d).
We can see that, with the support of interrupt emulation,
these 4 processes obtained far more CPU cycles, compared
to those under the original flash driver implementations, and
a longer timeout period resulted in a larger discrepancy as
expected. Note that process1 obtained more CPU cycles
than the other 3 processes did because it had the shortest
period.

Table 4: CPU-bound processes

Period (us) I 300 I 370 1 710 I 780
Computation I 30 I 30 I 40 I 40

I Process1 I Process2 1 Process3 I Process4

1 Time (ps) I I I I

5.2 Effectiveness of the Energy-Efficient
Strategy

I

Number of State Switchings among Power
States

Figure 8: Experimental Results of the Energy-
Efficient Strategy

The proposed TSPP-based and the greedy algorithms were
evaluated for energy efficiency considerations. One impor-
tant parameter that affected the effectiveness of the energy
efficient strategy was the number of pending requests in the
110 queue when scheduling was performed. We measured
the number of state switchings by varying the number of
pending 110 requests. The experimental results were shown
in Figure 8. We could see that the number of state switch-
ings was reduced significantly, compared to that without
request scheduling. As we increased the number of pending
110 requests, better improvement was observed for both of
the proposed algorithms. Note that the number of pend-
ing 110 requests wa5 mainly determined by the workload
in a real system and the timeout period of the MTD dis-
patcher. When the number of pending requests was large,
the greedy algorithm outperformed the TSPP-based alg*
rithm although the TSPP-based algorithm could provide an
approximation bound to the optimal solution.

6. CONCLUSION
The paper proposes an energy-efficient flash-memory stor-

age systems with intcrrupt-emulation mechanism to relieve
the microprocessor from the wasting of valuable CPU cy-
cles in many existing embedded systems implementations.
We propose to revise the waiting function in the Memory-
Technology-Device layer to avoid busy waiting. An 110

queue and a request-dispatching task are proposed to sched-
ule 110 requests and to notify the completion of each re-
quest. An energy-efficient strategy is presented for multi-
bank flash-memory storage systems, especially on when to
switch the power state of each flash-memory bank. The
strategy is to minimize the energy consumption of flash
memory without resulting in performance degradation. Is-
sues on the execution orders of read, write, and erase oper-
ations over Rash memory are also explored. We show that
energy consumption could he significantly reduced with mi-
nor delay on the average response time of 110 requests in
realistic traces, and much saving on CPU cycles could he
achieved.

For future research, we should further explore the char-
acteristics of flash memory. especially when application se-
mantics is considered. With joint considerations of applica-
tion designs and flash-memory characteristics, much perfor-
mance improvement could be reached with even less system
overheads and cost.

7. REFERENCES
(I] L. P. Chang and T. W. Kuo, "An Adaptive Stripping

Architecture for Flash Memory Storage Systems of
Embedded Systems," IEEE Einhth Real-Time and
Embedded '&chnol&y and Applications Symposium
(RTAS), San Josel USA, Sept 2002.

Dynamic-Voltage-Adjustment Mechanism in Reducing the
Power Consumption of Flash Memory for Portable
Devices," IEEE Conference on Consumer Electronic (ICCE
2001), LA. USA, June 2001.

[3] F. Doughs, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and
J.A. Tauber, "Storage Alternatives for Mobile Computers,"
Proceedings of the USENIX Operating System Design and
Implementation, 1994.

intractability", 1979.

Flash-Memory Based File System," USENIX Technical
Conference on Unix and Advanced Computing Systems,
1995 .

Management for Flash Storage System," Twenty-Third
Annual International Computer Software and Applications
Conference October 25 - 26, 1999 Phoenix, Arizona.

[7] Vijay V. Vazirani, "Approximation Algorithm," Springer
publisher, 2001.

[a] C. H. Wu, L. P. Chang, and T. W. Kuo, "An Efficient
B-Tree Layer for Flash-Memory Storage Systems," The 9th
International Conference on Red-Time and Embedded
Computing Systems and Applications (RTCSA 2003).

(91 C. H. Wu, L. P. Chang, and T. W. Kuo, "An Efficient
R-Tree Implementation over Flash-Memory Storage
Systems," The 11th International Symposium on Advances
in Geographic Information Systems (ACM-GIS 2003).

[lo] M. Wu, and W. Zwaenepoel, "eNVy: A Non-Volatile, Main
Memory Storage System," Proceedings of the Gth
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
1994), 1994.

[2] L. P. Chang and T. W. Kuo; "A

[4] M. R. Garey, and D. S . Johnson, "Computers and

[5] A. Kawaguchi, S. Nishiokz, and H. Motoda, "A

[GI H. J. Kim and S . G. Lee, "A New Flash Memory

(111 http://www.linux-mtd.infradead.org/
1121 Intel Corporation, "Understanding the Flash Translation

1131 Theo C. Ruys, "Optimal Scheduling using Branch and
Layer(FTL) Specification''

Bound with SPIN 4.0," Supported by Project AMETIST,
Department of Computer Science , University of Twente.

139

http://www.linux-mtd.infradead.org

