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ABSTRACT 
One of the emerging critical issues for Rash-memory storage 
systems, especially on the implementations of many embed- 
ded systems, is on its programmed 110 nature for data trans- 
fers. Programmed-110-based data transfers might not only 
result in the wasting of valuable CPU cycles of microproces- 
sors but also unnecessarily consume much more energy from 
batteries. This paper presents an  interrupt-emulation mech- 
anism for flash-memory storage systems with an energy- 
efficient management strategy. We propose to revise the 
waiting function in the Memory-Technology-Device (MTD) 
layer to  relieve the microprocessor from busy waiting and 
to  reduce the energy consumption of the system. We show 
that energy consumption could he significantly reduced with 
good saving on CPU cycles and minor delay on the average 
response time in the expcriments. 

Categories and Subject Descriptors 
C.3 [Special-Purpose And Application-Based Systems]:  
Real-time and embedded systems; D.4.2 [Opera t ing  Sys- 
tems]: Secondary storage; B.3.2 [Memory  Structures]: 
Mass storage 

General Terms 
Design, Performance, Algorithm 

Keywords 
Flash Memory, Storage Systems, Embedded Systems, Interrupt- 
Emulation 110, Energy-Efficient, Programmed 110 

1. INTRODUCTION 
Flash memory has been widely adopted in various plat- 

forms for storage systems. Many of its usages are now well 
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beyond its original designs. Application programs or operat- 
ing systems on ernbedded systems usually use programmed 
110 to  access flash memory. Such a phenomenon might not 
only result in the wasting of valuable CPU cycles of micro- 
processors hut also unnecessarily consume much more en- 
ergy from batteries, especially for embedded systems. 

In past few years, many excellent research results have 
been proposed far the performance enhancement of Rash- 
memory storage systems, e.g., [l, 5, 6, 8, 9, 101. In particu- 
lar, Wu, et al. proposed to  adopt SRAM as write buffers and 
presented several cleaning policies for garbage collection [lo]. 
Kawaguchi, et al. proposed the cost-benefit policy [5], which 
uses a value-driven heuristic function as a block-recycling 
policy. Kim, et al. 161 proposed to  periodically move live 
data  among blocks so that blocks have more even lifetimes. 
To improve the overall performance, Chang and Kuo [l] pro- 
posed an adaptive striping architecture which consists of 
several independent banks. While energy-efficient designs 
have become an important issue on embedded systems, re- 
searchers have started exploiting energy-aware designs of 
flash-memory storage systems, e.g., [2, 31. In particular, 
Douglis, et al. [3] provided a series of energy consumption 
measurement for flash memory under different percentages 
of capacity utilization. 

The objective of this research is to  evaluate the feasibility 
and benefits of energy-efficient flash-memory storage sys- 
tems with interrupt-emulation. The goal is not only to  re- 
lieve the microprocessor from wasting valuable CPU cycles 
because of the programmed-110-based data transfers of flash 
memory in many existing implementations, but also provide 
an energy-efficient strategy. First, we propose an interrupt- 
emulation mechanism for Rash-memory storage systems, in 
which the the waiting function in the Memory-Technology- 
Device (MTD) layer is revised to relieve the microprocessor 
from busy waiting. Each 110 request of the flash-memory 
storage system is inserted into a queue for the storage system 
for scheduling, where a single task dedicated for the storage 
system is responsible of scheduling and dispatching requests 
and notifying the completion of each request. Furthermore, 
an energy-efficient strategy is presented for multi-hank flash- 
memory storage systems, especially on when to  switch the 
power state of each flash-memory bank. We show that en- 
ergy consumption could be significantly reduced, and much 
saving on CPU cycles could be achieved. In the experiments, 
i t  was also observed that only minor delay on the average 
response time of 110 requests in realistic traces. 

The rest of this paper is organized as follows: Section 2 
provides an overview of flash memory. Section 3 introduces 
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the interrupt-emulation mechanism. Section 4 provides an 
energy-efficient strategy based on the interrupt-emulation 
mechanism. Section 5 shows experimental results. Section 
6 is the conclusion. 

2. FLASH-MEMORY CHARACTERISTICS 
NAND flash memory is popular in the markets and con- 

sidered for storage systems designs. NAND flash-memory 
might consist of multiple hanks, and each bank is a flash 
unit that could operate independently. Each bank is par- 
titioned into blocks, where each block is of a fixed number 
of pages. A block is the smallest unit of an erase opera- 
tion, while read and write operations are handled by pages. 
The typical block size and page size are 16KB and 512B, 
respectively. Because of the hardware characteristics, data 
could not he overwritten over pages on updates. Instead, 
data  must be written to some free space. The update strat- 
egy is called "out-place update". Pages that store the most 
recent versions are called "live pages", and pages that store 
old versions are called "dead pages". 

Because of the out-place update strategy, a dynamic ad- 
dress translation mechanism is needed to map a given LBA 
(logical block address) to  the physical address where the 
valid data reside. To accomplish this objective, a RAM- 
resident translation table is adopted. The translation table 
is indexed by LBA, and each entry of the table contains 
the physical address of the corresponding LBA. Each entry 
in the table is a triple (bank-num, block.nam, page-num) 
indexed by LBA, where each triple of an LBA indicates 
its corresponding hank number bank-num, block number 
blocknum; and page number p a g e n a m .  

After a certain number of page writes, the amount of free 
space on flash memory would be low. Activities that consist 
of a series of reads, writes, and erases with the intention 
to  reclaim free spaces would then start. The activities are 
called "garbage collection" and considered as overheads in 
flash-memory management. The objective of garbage col- 
lection is to recycle dead pages scattered over blocks so that 
they could become free pages after erasing. 

3. AN INTERRUPT-EMULATION MECHA- 
NISM FOR FLASH-MEMORY STORAGE 
SYSTEMS 

3.1 System Architecture 

Table 1: NAND-Flash Performance fSamsune 
K9F6408UOA 8MB NAND flash memory j 

The setuolhusv Dhase of read I 27/25 
Phase I Interval (ps) 

., I I 

The setup/busy phase of write i 
The setup/busy phase of erase 1 

27j350 
31/2500 

Due to  the hardware characteristics of flash memory, ap- 
plication programs or operating systems on many embedded 
systems must use programmed 110 t o  access flash memory. 
The operation model of NAND flash, in general, consists of 
two phases: setup and busy phases. For example, the first 
phase (called "setup" phase) of a write operation is for com- 
mand setup and data transfer. The command, the address, 

and the data are written to proper registers of flash mem- 
ory in order. The second phase (called "busy" phase) is for 
busy-waiting of the data being flushed into flash memory. 
The operation of reads is similar to  that of writes, except 
that the sequence of data transfer and busy-waiting is in- 
verted. The phases of an erase is as the same as those of 
a write, except that no data transfer is needed in the setup 
phase. Note that writes and erases are time consuming, and 
most of the time is spent in the busy phase, where busy 
waiting occurs. The performance of NAND flash memory is 
summarized in Table 1. 

Figure 1: System Architecture 

The system architecture of a flash-memory storage system 
consists of two layers, as shown in Figure 1. They are the 
Flash Translation Layer (FTL) and the Memory Technologv 
Device (MTD) layer. The file systems layer is over the flash- 
memory storage system to provide a logical file interface 
for applications. FTL provides block-device emulation for 
transparent access from file systems without any modifica- 
tions to  existing file-system implementations [12]. Garbage 
collection, and address translation are handled in FTL. The 
MTD layer provides handling routines for read, write and 
erase operations, between devices (e.g., flash memory) and 
an upper layer (e.g., FTL) [ll]. 

In this paper, we propose to  provide an 1/0 request model 
for interrupt emulation (Please see Section 3.2.1) and to  re- 
vise the waiting function in the MTD layer to relieve the 
microprocessor from busy waiting (Please see Section 3.2.2). 
In the MTD layer, we will present an energy-efficient strat- 
egy for multi-bank flash memory (Please see Section 4),  es- 
pecially on when to switch the power state of each flash- 
memory bank. 

3.2 System Design 

3.2.1 An U0 Request Model for an Interrupt-Emulation 
Mechanism 

An 110 request could be modelled by a tuple ( P I D ,  topi, . . . , 
op,}), where P I D  denotes the ID of the process that issues 
the operations in the ordered list { o p ~ ,  . . . , op,}. Each el- 
ement in the ordered list lop,, . . . , opn} that represents an 
operation over the flash-memory storage system, such as a 
read, a write, and an erase, must he executed according 
to its index order in the list. For example, an operation 
op, could be (READ, (bank,, block,, page , ) ,  read-data), 
(WRITE,  (bank,, block,, pagei), write-data), or (ERASE, 



S C H E D UL lN G: 

DISPATCHING 
Schedule 110 requests of the U0 queue aceording to some criteria 

for each U0 q u e s t  R in the U0 queue do 
for each operation op in R do 

Executeop //&tup Phare 
ifvpisawtileoranerascthan 

end if 
The MTD dispatcher invokes a waiting function IISusy Pharr 

end for 
I* NOTIFYING V 
The MTE dispatcher rc~umcs the corresponding VO-questing pmess of R 

end for 

Figure 2: The MTD dispatcher  

(bank,, block;)), where bank;, blocki, and page, represent 
the bank number, the block number, and the page number 
of the corresponding operation, respectively. When a prw 
cess invokes an 110 system call, such as fwrite() or fread(), 
the file system might issue one or more requests to  FTL to 
access data in the flash memory. FTL would then issue one 
or more 110 requests to  the MTD layer. 

An 110 queue is provided in the MTD layer for inter- 
rupt emulation and energy-efficient design (Please see Sec- 
tion 4). Each 110 request received by the MTD layer is 
inserted into the 110 queue and wait for the dispatching to  
the flash memory. 110-requesting processes would suspend 
themselves when their 110 requests are inserted into the 110 
queue. A system task, referred to as the M T D  dispatcher, 
dispatches the first 110 request in the queue, and would 
invoke a waiting function to enter the busy phase if the o p  
eration of the 110 request is a write or an erase (Please see 
Section 3.2.2). When an I f 0  request completes, the MTD 
dispatcher would resume the corresponding process. The 
work of the MTD dispatcher is summarized in Figure 2. 

3.2.2 The Design of the Waiting Function 

In*oklhirnunghllxuan,ti"8f"~tim f ,wok Uxruunlfundrn 

ScwpPhlx B m y k  

/c 
Sclvpphav Busyphav 

Emsmg ofa  blmk- 

Figure 3: TWO phases of a flash-memory ope ra t ion  

A waiting function is supposed to  be invoked in the busy 
phase of a write or an erase, as shown in Figure 3. In the 
current MTD layer implementation, the waiting function is 
invoked to  yield the CPU to other processes because the 
busy phase of a write or an erase is time-consuming, as 
shown in Function 1 in Figure 4. The invocation of yield() 
would virtually move the 110-requesting process (in fact, it 
is the operating system running on behalf of the process) 
to  the ready queue. If the 110-requesting process that in- 
vokes yield() has the highest priority among ready processes 
in the ready queue of the operating system, then the 110- 
requesting process would be dispatched such that it invokes 
yield() again, and the procedure repeats for the "timeout" 
period of time. Because the I/O-requesting process tends 
to  be the highest priority process, such a behavior could be 

considered as a variation of programmed 110. It  might not 
only result in the wasting of valuable CPU cycles but also 
unnecessarily consume much more energy from batteries, es- 
pecially for embedded systems. Note that no invocation of 
the waiting function is done for reads because their busy 
phase is short. 

Function 1 The original waiting function 

Input 2." operation o p  : a write o r  a" erase 
i f  op is 1 write ,hen 

timeout = the time o f  the busy phase for the writing o f  n page 

timeoul= the lime o f  the busy phase for the errsing o f  r block 
else if o p  is an erase then 

end if 
while timeout is valid do 

if op finishes then 

else 

end if 
end while 
if o p  fails then 

end if 

return 

yield0 ( the flash memory is busy in the busy phase ) 

verify the status of the operation o p  

Function 2 The proposed waiting function 

Input a" operation op : a write or a" erase 
if up is 61 write then 

else if op is  an erase then 
timeout = the time o f  the bury phnie for the writing of r page 

limeout = the time of the busy phase for the erasing of a block 
-"A I, .. 
rleep(timeouf) ( the flash memory is busy in the busy phase ) 
if op finisher then 

rerum 
end if 
ifop fails then 

mn if 
verify the statui of the operation op 

Figure 4 Wait ing Funct ion 

Different from the traditional implementations of the MTD 
layer, we propose to  invoke sleep() in the waiting function to 
relieve the CPU from busy waiting as a part of the proposed 
interrupt-emulation mechanism. As shown in Function 2 in 
Figure 4, the busy-waiting whilcloop is replaced with an in- 
vocation of sleep(). Such an invocation would put the MTD 
dispatcher into sleep until the expiration of the "timeout" 
period, and the MTD dispatcher (also referred to  as the cor- 
responding 110-requesting process) is moved to the waiting 
queue of the operating system. When the timeout event oc- 
curs, the MTD dispatcher is awaken. When all operations 
in an 110 request complete, the MTD dispatcher resumes 
the corresponding 110-requesting process. 

Important technical questions for the proposed approach 
are on the predictability of the timeout period in the wait- 
ing function, the impacts o n  the sustern performance, and 
the potential overheads. We must point out that the access 
time of flash memory has a very small variance over widely 
different workloads. The average time of the busy phase for 
the writing of a page (512B) was 350 f is ,  and that of the 
erasing of a block (16KB) was 2500 ps.  The variance of the 
access time was roughly between 10 p s  and 30 f is. There- 
fore, the access time of flash memory is highly predictable. 
In the experiments, we shall provide measured results for 
the system performance under different timeout periods so 
that  users could make the best decision for their selection. 
The  impacts on the performance of the flash-memory stor- 
age system due to  the interrupt-emulation mechanism would 
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be dominated by that of the invocation of sleep() by the 
MTD dispatcher and the time to  suspensian/resume 110- 
requesting processes (and the MTD dispatcher). We could 
show in the experiments that the overheads are negligible. 

4. THE ENERGY-EFFICIENT STRATEGY 

4.1 Overview 
In a multi-bank flash system, each bank can switch to  

different power states independently. We assume a simple 
power management policy that switches a hank to  a low 
power state (LPS)  once it is idle and a high power state 
( H P S )  to service a request, where state switching incurs 
both the performance and energy overheads. Consider a 4- 
bank flash system with 4 requests in the 110 queue, as shown 
in Figure 5. It requires 14 power state switchings, as shown 
in Figure 5.(a). However, it requires only 6 state switch- 
ings, as shown in Figure 5.(b). Based on the observation, 
a scheduling strategy is needed to  minimize the number of 
state switchings to  achieve energy saving. 

LPSi3 .4  L P s : 1 4  
LPS: LA LPS: i.2 
HPS: 1.4 HPS: 3 4  

<a, For 110 REqueSls Wilh0"I <b, For 110  Rcquesls With 
Ssheduling Scheduling 

Figure 5:  Reordering of Requests 

DEFINITION 1. The Schedulzng Problem of I /O Requests: 
Given a collection T of 110 requests, and a cost vector 
C(r,,r,) for any r, and r, E T ,  the scheduling problem of 
110 requests is to  find an execution order of T such that the 
total cost is minimum. 

C(r,, 7,) represents the number of power state switchings 
required, i.e., C(r,, 7,) = IBank,I + IBank,I - 2 t (IBank, n 

could be found in an off-line fashion. We referred interesting 
readers to  1131 for optimal solution using Branch and Bound. 

For'the Lesi of this section, we shallfirst address the de- 
pendency issues of requests to  ensure the correctness of a 
program execution. We will then present two scheduling 
heuristics for request scheduling (instead of those based on 
a pre-determined preferred order). Their performance eval- 
uation will be included in Section 5.2. 

_ .  
Binkjl);  where Ba& and Bank, denote two sets'of banks 
that r, and r, access, respectively. 

The complexity in solving the scheduling problem of 110 
requests depends on the number of combinations of banks, 
instead of the number of requests in general. Since the 
number of hanks in many current implementations is very 
limited, we can either find out the best ordering of bank 
combinations or run approximation algorithms in the min- 
imization of state switchings. For example, when there 
are 4 banks in a system, there are 15 bank combinations: 
{(1),(2),(3),(4),(1,2),  (L3L (1,4),(2,3),(2,4),(3,4), (1,2,3),  
(1 ,3 ,4) ,  (2,3,4),  (1,2,3,4)}. We first come out a preferred 
order of requests in the 15 bank combinations. When re- 
quest scheduling is needed, we always schedule requests in 
the same bank combination together and schedule requests 
in bank combinations according to a pre-determined pre- 
ferred bank-combination order. Note that a preferred order 

~ 
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4.2 Scheduling Issues on Dependency 
Relations 

There are three types of operations over the flash memory: 
read, write and erase. At the MTD layer, each operation in 
a request is associated with a physical block address (PBA). 
There could he access conflicts among operations on their 
physical block addresses. We say that two requests R, and 
R, conflict with each other if R, and RI satisfy any of the 
following conditions: 

1. There exist one operation in R; and one in R; such 
that the two operations have the same PBA, and one 
of them is a write operation (or both are write opera- 
tions). 

2. There exist one operation in R, and one in R, such 
that one of the two operations is an erase operation, 
and the other is a read or write operation with a PBA 
inside the block to be erased by the erase operation. 

For any two conflicting requests, their order is, in fact, 
not changeable; otherwise, the contents of the Rash memory 
could be different after the reordering of 110 requests or 
wrong situations could happen. As a result, 110 requests in 
the 110 queue are partitioned into two sets: requests with 
conflicting operations and requests without any conflicting 
operations. The MTD dispatcher services all requests with 
conflicting operations first and services all requests without 
any conflicting operations in an order determined by the 
following scheduling algorithms. 

4.3 Approximation Algorithms 
The purpose of this section is to  present two algorithms for 

the scheduling of non-conflicting requests: A TSPP-based 
algorithm with an approximation bound and a greedy alg- 
rithm. The performance evaluation of the algorithms will 
be reported in Section 5.2. Before the presentation of the 
TSPP-based scheduling algorithm, we shall first prove the 
triangle inequality property for the cost vector: 

LEMMA 1. C(r2,rj)  satisfies triangle inequality i f  all I /O 
requests are non-conflicting requests. That is, C(ri,r3) + 
C(r j , rk )  2 C(r;,rk) for any r;, rj, and r k  E a collection of 
non-conflicting requests T .  

2r(IBankinBankjl))+(IBanlejI+/BankkI - 2 * ( I B a n k , n  
Banks)I)-  (IBankil+lBankbI-2+(IBankinBankbI))=2*lBanle,I- 
2*(IBankinBankjI+IBanlc3nBankr,l)+ 2*IBank,nBankr,l>O. 
As a result, C(r;,rJ) satisfies triangle inequality. 0 

We could apply a TSPP-based approximation algorithm 
on the scheduling of non-conflicting requests because the 
cost vector satisfies triangle inequality (Please see to  Lemma 
1). TSPP is defined as follows [4]: Given a complete graph 
with vertex V ,  and a nonnegative edge cost vector for any 
edges, the travelling salesman path problem is to find a 
Hamiltonian path with the minimum cost. Figure 6.(a) 
shows a TSPP-based solution for the example shown in Fig- 
ure 5. Each request in the scheduling problem is a node 
in the TSPP instance. The number marked on the edge of 
(r,, r,) corresponds to C(ri, rI). We adopt the well-known 
2-approximation algorithm' in [7] because of its simplicity 

'The 2-approximation algorithm mainly consists of the min- 
imum spanning tree algorithm and the Eulerian tour. 

Proof. c(Tt ,  T j )  + c ( T j , T k ) - C ( T , ,  T k )  =(lBank,I+IBank,I- 
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Applications 

1.4 3 , 4  

(a) A TSPP-based solution (b) A greedy solution 

Figure 6 :  Solutions based on a TSPP-based a p  
proach and a greedy approach  

Web Applications, E-mail Clients, 
MP3 player, and Virtual Memory 

in implementation. Note that when a new non-conflicting 
110 request arrives for scheduling, all scheduled 110 re- 
quests must be rescheduled with the new 110 request by 
the TSPP-based approximation algorithm. The complex- 
ity of each rescheduling is O(lVl') for the 2-approximation 
algorithm. 

Request scheduling could also be done by a simple and ef- 
ficient heuristics, referred to as the greedy algorithm for the 
rest of this paper: Let S be a schedule of all non-conflicting 
pending 110 requests. When a new request arrives, the 
greedy algorithm simply scans over the schedule from the 
front to the end to  find the best place to insert the new 
request in. The selection is based on the minimization of 
the final cost. For example, let r4 be a new request, and 
there are four potential locations (Ll,  L2, L3, or L4) for in- 
sertion, as shown in Figure 6.(b). According to the greedy 
algorithm, L3 and L4 would be better than L1 and L2 be- 
cause of less cost. The time complexity of each rescheduling 
is O(jV1). 

Total Data Written 
Total 110 Requests 
Read J Write Ratio 

Mean ReadIWrite Size 

5. PERFORMANCE EVALUATION 

122 MB 
33,000 

44% / 56% 
31.3 / 16 Pages 

Activities 
Duration I 2 Hours - 

A series of experiments was conducted on an Ah4D-Duron 
(750Mhz) machine running RedHat 7.3 with the proposed 
MTD layer. The performance evaluation was done over a 
Cbank NAND type flash system. The size of each bank was 
25MB, and the page size was 5 1 2 8 .  The characteristics of 
the traces are summarized in Table 2. Note that the page 
allocation policy was based on the striping architecture [l]. 

The evaluation of the proposed energy-efficient interrupt- 
emulation mechanism was done in two parts. First, we 
demonstrated the capability of the interrupt-emulation mech- 
anism in Section 5.1. We then showed the advantages of the 
proposed method in energy-efficiency considerations. 

5.1 Performance of the Interrupt-Emulation 
Mechanism 

Table 3: The Overheads  of the Interrupt-Emulation 
Mechanism 

I Ave. ( p s )  I Deviation (ps) 
Overheads of the I 20 I 10 

invocation of sleep() 
Overheads of the suspension 1 30 I 10 

and resumption time 
Overheads of I 50 I 20 

each 110 request 

The overheads for the supporting of the interrupt-emulation 
mechanism mainly came from the invocation of sleep() by 
the MTD dispatcher and the time to suspendlresume 110- 
requesting processes and the MTD dispatcher. We measured 
these overheads in the kernel mode for more precise results. 
The results art? summarized in Table 3. We can see that 
the total overheads for each 110 request is about 50 p s  on 
average, and the deviation for each 110 request is about 20 
ps. Compared with the average service time, 2 m s  and 6 rns 
for readslwrites, the performance overheads (that is about 
50 ps on average) from the interrupt-emulation mechanism 
was reasonable. 

(C)TOld C0mpimtiO"hC of4hvUPnait? 
h e n e i  when SW=scO and SLLIYO 

(d) To3Cornpu~isonTimcafl law rho ti^ 
h a e s r r r h m S W ; M a a n d S ~  

Figure 7: Exper imen ta l  Results of the Interrupt- 
Emula t ion  Mechanism. (SW a n d  S E  denote the 
t i m e o u t  period of the busy phase for wri t e  and erase 
operat ions,  respectively) 

We measured the accumulated sleep time for 3 different 
timeout periods, as shown in Figure 7.(a). We can see that 
longer timeout periods resulted in longer sleep time as ex- 
pected. During the sleep period of the h4TD dispatcher, the 
microprocessor could be used by other processes thereby in- 
creasing the system throughput. To quantify this effect, we 
executed four additional CPU-bound processes with lower 
priorities than theMTD dispatcher. The period and compu- 
tation time of the four CPU-bound processes was described 
in Table 4. We measured the CPU time spent on these four 
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processes with and without the interrupt-emulation mech- 
anism. The results are shown in Figure7.(b), (c) and (d). 
We can see that, with the support of interrupt emulation, 
these 4 processes obtained far more CPU cycles, compared 
to those under the original flash driver implementations, and 
a longer timeout period resulted in a larger discrepancy as 
expected. Note that process1 obtained more CPU cycles 
than the other 3 processes did because it had the shortest 
period. 

Table  4: CPU-bound processes 

Period (us) I 300 I 370 1 710 I 780 
Computation I 30 I 30 I 40 I 40 

I Process1 I Process2 1 Process3 I Process4 

1 Time (ps) I I I I 

5.2 Effectiveness of the Energy-Efficient 
Strategy 

I 

Number of State Switchings among Power 
States 

Figure 8: Experimental  Results of the Energy- 
Efficient Strategy 

The proposed TSPP-based and the greedy algorithms were 
evaluated for energy efficiency considerations. One impor- 
tant parameter that affected the effectiveness of the energy 
efficient strategy was the number of pending requests in the 
110 queue when scheduling was performed. We measured 
the number of state switchings by varying the number of 
pending 110 requests. The experimental results were shown 
in Figure 8. We could see that the number of state switch- 
ings was reduced significantly, compared to  that without 
request scheduling. As we increased the number of pending 
110 requests, better improvement was observed for both of 
the proposed algorithms. Note that the number of pend- 
ing 110 requests wa5 mainly determined by the workload 
in a real system and the timeout period of the MTD dis- 
patcher. When the number of pending requests was large, 
the greedy algorithm outperformed the TSPP-based alg* 
rithm although the TSPP-based algorithm could provide an 
approximation bound to the optimal solution. 

6. CONCLUSION 
The paper proposes an energy-efficient flash-memory stor- 

age systems with intcrrupt-emulation mechanism to relieve 
the microprocessor from the wasting of valuable CPU cy- 
cles in many existing embedded systems implementations. 
We propose to revise the waiting function in the Memory- 
Technology-Device layer to avoid busy waiting. An 110 

queue and a request-dispatching task are proposed to sched- 
ule 110 requests and to  notify the completion of each re- 
quest. An energy-efficient strategy is presented for multi- 
bank flash-memory storage systems, especially on when to  
switch the power state of each flash-memory bank. The 
strategy is to  minimize the energy consumption of flash 
memory without resulting in performance degradation. Is- 
sues on the execution orders of read, write, and erase oper- 
ations over Rash memory are also explored. We show that 
energy consumption could he significantly reduced with mi- 
nor delay on the average response time of 110 requests in 
realistic traces, and much saving on CPU cycles could he 
achieved. 

For future research, we should further explore the char- 
acteristics of flash memory. especially when application se- 
mantics is considered. With joint considerations of applica- 
tion designs and flash-memory characteristics, much perfor- 
mance improvement could be reached with even less system 
overheads and cost. 
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