
Practical PACE for Embedded Systems ∗

Ruibin Xu, Chenhai Xi, Rami Melhem, Daniel Mossé
Computer Science Department, University of Pittsburgh

Pittsburgh, PA 15260
{xruibin,chenhai,melhem,mosse}@cs.pitt.edu

ABSTRACT
In current embedded systems, one of the major concerns is
energy conservation. The dynamic voltage-scheduling (DVS)
framework, which involves dynamically adjusting the volt-
age and frequency of the CPU, has become a well studied
technique. It has been shown that if a task’s computational
requirement is only known probabilistically, there is no con-
stant optimal speed for the task and the expected energy
consumption is minimized by gradually increasing speed as
the task progresses [11]. It is possible to find the optimal
speed schedule if we assume continuous speed and a well-
defined power function, which are assumptions that do not
hold in practice. In this paper, we study the problem from
a practical point of view, that is, we study the case of dis-
crete speeds and make no restriction on the form of the
power functions. Furthermore, we take into account pro-
cessor idle power and speed change overhead, which were
ignored in previous similar studies. We present a fully poly-
nomial time approximation scheme (FPTAS), which has per-
formance guarantees and usually obtains solutions very close
to the optimal solution in practice. Our evaluation shows
that our algorithm performs very well and generally obtains
solutions within 0.1% of the optimal.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-
ing ; D.4.7 [Operating Systems]: Organization and De-
sign—Real-time systems and embedded systems

General Terms
Algorithms

∗This work has been supported by the Defense Advanced
Research Projects Agency through the PARTS (Power-
Aware Real-Time Systems) project under Contract F33615-
00-C-1736 and by NSF through grants 0125704 and 0325353

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

Keywords
Real-time, Dynamic Voltage Scaling, Power management,
Processor Acceleration to Conserve Energy, Fully Polyno-
mial Time Approximation Scheme

1. INTRODUCTION
Energy minimization is critically important for embedded

portable and handheld devices simply because it leads to ex-
tended battery life. Dynamic voltage scaling (DVS) allows
a processor to change the clock frequency and supply volt-
age on-the-fly to trade performance for energy conservation.
Using DVS, quadratic energy savings [7, 19] can be achieved
at the expense of just linear performance loss. Various chip
makers, such as Transmeta, Intel, and AMD, manufacture
processors with this feature.
When applied to real-time embedded systems, DVS schemes

focus on minimizing energy consumption of tasks in the sys-
tems while still meeting the deadlines. Because most em-
bedded systems are small and simple, a central problem is
to statically (i.e., prior to runtime) find the best running
speed/frequency of a task. If a task’s computational re-
quirement (i.e., number of cycles it will execute) is known
deterministically, it has been shown that one can safely com-
mit to a constant optimal CPU speed during the execution
of a task to minimize the energy consumption [2], assum-
ing continuous speeds. If a CPU only offers a fixed, limited
set of valid speeds, using the two speeds which are immedi-
ate neighbors to the optimal speed will minimize the energy
consumption [8]. Note that this requires intra-task speed
change, which can be realized through a timeout mecha-
nism, or by inserting system calls into the task at compile
time.
However, more often than not, a task’s computational re-

quirement is only known probabilistically. In this case, it
is impossible to determine a constant optimal speed and
the expected energy consumption is minimized by gradually
increasing the speed as the task progresses, which is an ap-
proach named as Processor Acceleration to Conserve Energy
(PACE) [11]. Similar to the case where a task’s computa-
tional requirement is known deterministically, the optimal
speed schedule can be obtained assuming continuous speeds
and well-defined power functions, such as perfectly cubic
power versus frequency function.
These assumptions typically do not hold in practice. A

number of schemes, such as PACE [11] and GRACE [20],
have proposed to use well-defined functions to approximate
the actual power function and solve the continuous version
of the problem before rounding the speeds to the available

54

discrete speeds. The schemes are of great simplicity at the
expense of the optimality of the solution. Although the au-
thors of PACE predicted that rounding should work reason-
ably well, the effect of the approximations on the quality of
the solution compared to the optimal solution has not been
studied.
In this paper, we study the problem from a practical point

of view, that is, we focus on efficient algorithms that apply
directly to the case of discrete speeds and do not make any
assumption about the power function. We also take into ac-
count processor idle power and speed change overheads. We
design a fully polynomial time approximation scheme (FP-
TAS) that can obtain ε-optimal solutions, which are within
a factor of 1 + ε of the optimal solution and run in time
polynomial in 1/ε. That is, we explore the tradeoff between
the accuracy of the solution and the computational effort
needed to find it and show that in practice these algorithms
are fast and extremely close to optimal algorithms. We also
identify the conditions when fast optimal exact algorithms
are applicable.
The remainder of this paper is organized as follows. Sec-

tion 2 gives the problem formulation. A brief review of
strongly related work (PACE and GRACE) is given in Sec-
tion 3. In Section 4 we identify the conditions when sim-
ple, fast exact optimal algorithm is applicable. Section 5
presents our fully polynomial time approximation scheme
and proof of correctness. Evaluation results are reported in
Section 6. In Section 7 concluding remarks and future work
are presented.

2. PROBLEM FORMULATION
Before we give the formulation of the problem solved in

this paper, we show how the problem solved in [11] is for-
mulated when the speed of the task can be changed contin-
uously and the power function is well defined.

2.1 Theoretical Optimal Formulation
Assume the processor can attain any speed continuously

between 0 cycles/sec and infinite cycles/sec, and the length
(speed) of each cycle during the execution of the task can
be adjusted. Assume that the number of cycles used by the
task denoted is a random variable X, and that the task is
allotted a certain amount of time, D, to execute (in the rest
of this paper we think of D as the deadline of the task).
Thus, the problem is to statically find the speed for each
cycle such the expected energy consumption of the task is
minimized while still meeting the deadline.
The cumulative density function, cdf , associated with X

is defined as cdf(x) = Pr(X ≤ x). This function reflects the
probability that the task finishes before a certain number
of clock cycles, x. Let WC be the worst case number of
clock cycles for the task, thus we have cdf(WC) = 1. For
each cycle y (1 ≤ y ≤ WC), a specific energy, ey, will be
consumed depending on the frequency, fy, adopted for this
cycle. However, each of these cycles is executed with a cer-
tain probability, and hence, the expected energy consumed
by cycle y is (1− cdf(y − 1)) · ey. Let Z be the energy con-
sumed by the whole task, which is also a random variable.
Thus the expected value of Z is

E[Z] =
∑

1≤y≤WC

(1− cdf(y − 1)) · ey

Assume that the power function is well defined by ey =

fαy , where α ≥ 2. Then, we have the following mathematical
programming problem:

Minimize
∑

1≤y≤WC

(1− cdf(y − 1)) · fαy

Subject to
∑

1≤y≤WC

1

fy
≤ D

which can be solved by Lagrangian technique [13] or Jensen’s
inequality [9].

2.2 Piecewise constant speed schedules
Obviously, computing speed for each cycle is too over-

whelming considering that a task usually takes millions of
cycles. Furthermore, the ability to change speed in any cy-
cle is unreasonable since real-world operating systems have
some granularity requirement for changing speeds [1, 12].
Hence, in practice, we should probably change the speed
for a task no more than some reasonable number of times.
Thus, we need a schedule with a limited number of transi-
tion points at which speed may change. This implies that
the speed remains constant between any two adjacent transi-
tion points. Denote the ith transition point by bi. Therefore,
given r transition points, we partition the range [0,WC] into
r+1 phases: [b0, b1− 1], [b1, b2− 1], . . . , [br, br+1− 1], where
b0 = 1 and br+1 = WC+1 are used to simplify the formula.
Define speed schedule as speeds for each phase. Our goal is

to find a schedule that minimizes the expected energy con-
sumption while still meeting the deadline. Assume that the
processor providesM discrete operating frequencies, freq1 <
freq2 < · · · < freqM . Let the frequency for the ith phase be
denoted by fi (0 ≤ i ≤ r), where fi ∈ {freq1, freq2, . . . , freqM}.
Let the energy consumed by a single cycle in phase i be de-

noted by e(fi), where e(fi) =
p(fi)
fi

and p(fi) is the processor

power consumption when running at frequency fi. Thus we
obtain the following mathematical program:

Minimize
∑

0≤i≤r

si · Fi · e(fi) (1)

Subject to
∑

0≤i≤r

si
fi
≤ D (2)

where si = bi+1 − bi and Fi =
∑

bi≤j<bi+1
(1 − cdf(j − 1)).

Since e(f) is a discrete function, (1)-(2) cannot be solved by
Lagrangian technique or Jensen’s inequality.
It is not clear how to choose an optimal sequence of r

transition points. If the task cycle distribution is estimated
using a histogram, then assigning the boundaries of bins
of the histogram as transition points seem to be a natural
choice [20]. In [11] the authors proposed a heuristic to select
a “good” sequence of transition points but only justified
it under the condition of continuous speed. The choice of
transitions during a program execution is a function of the
overhead of the transition, the length of the program and
the number of possible speeds in the system. This is still
an open problem which is beyond the scope of this paper.
The interested reader is referred to [1], which assumed the
sequential form of program execution, where a program can
be divided into n segments of equal length, and [16], which
made use of compiler and placed the transition points on
the edges of the control flow graph of the program.

55

2.3 The Impact of Idle Power
In general, if the CPU has no task to execute, it will put

itself in an idle state, that is, the CPU is running at the
minimum operating frequency freq1 and only executing no-
op instructions. Therefore, the idle power pidle consumed
by the CPU when idle is strictly less than the power con-
sumption when running a task at the minimum operating
frequency. However, it is important to notice that the idle
power is not equal to zero.
The problem formulation described in (1)-(2) is based on

the implicit assumption that the idle power is zero because
our ultimate goal is to minimize the expected processor en-
ergy consumption and the objective function is the expected
energy consumed by tasks (both PACE and GRACE ignore
the idle power). Not only this assumption does not hold in
practice1, but also could lead to an abnormality called inef-
ficient frequency [14]. For example, for the IBM PPC405LP
(Table 1), the energy consumed by each cycle running at
frequency 266MHz, 600

266
≈ 2.2556, is higher than the en-

ergy consumed by each cycle running at frequency 333MHz
which is 750

333
≈ 2.2522. The frequency 266MHz is inefficient

in the sense that it is slower than the frequency 333MHz
yet consumes more energy. This implies that the frequency
266MHz will never be picked in the optimal speed schedule.
However, this is not true. Although using 333MHz con-
sumes less energy than using 266MHz for doing the same
amount of computation, it finishes the computation faster
and will spend more time consuming the idle power. There-
fore, it might end up consuming more energy. In fact, if
we take into account the idle power, which is 12mW for
the IBM PPC405LP, then the frequency 266MHz becomes
efficient [14].
In the presence of the idle power, we need to modify the

problem formulation. More specifically, we need to mod-
ify the definition of the function e(f). Assume that the idle
power is fixed. Since the amount of idle power is always con-
sumed by the CPU when it is on (when the CPU is running
at frequency f , we can think of it consuming two portions
of power: pidle and p(f) − pidle, where pidle is a constant),
we can eliminate the effect of the amount of idle power from
the function e(f), that is, we change the definition of e(f)
to

e(f) =
p(f)− pidle

f

and thus, the form of the objective function stay unchanged.

3. REVIEW OF PREVIOUSLY KNOWN
SCHEMES

In this section, we give a brief review and discussion of the
schemes provided by PACE and GRACE. Other researchers
have also tackled this problem, but with a completely dif-
ferent solution [6], which is geared towards soft real-time
tasks.
Both PACE and GRACE apply the well-known cubic-

root rule of the power functions [3] and hence use e(f) =
αf2 + β (α and β are constants) to approximate the ac-
tual energy/cycle function. This is based on the fact that
in CMOS circuits, the dominant component of power con-
sumption is proportional to V 2f , where V is voltage and f

1It does not hold in practice because of overhead of turning
the CPU on/off.

Table 1: PPC405LP speed settings and power con-
sumptions

Speed (MHz) 33 100 266 333
Voltage (V) 1.0 1.0 1.8 1.9
Power (mW) 19 72 600 750

Table 2: XScale speed settings and power consump-
tions

Speed (MHz) 150 400 600 800 1000
Voltage (V) 0.75 1.0 1.3 1.6 1.8
Power (mW) 80 170 400 900 1600

is frequency, and the highest frequency at which the CPU
will run correctly drops approximately proportionally to the
voltage (f ∝ V) [15]. However, this approximation may not
be accurate. We show that by two real-life examples of pro-
cessors used in embedded systems. Tables 1 and 2 show the
speed settings and power consumed by the IBM PPC405LP
(from our actual measurements) and Intel XScale [17] pro-
cessors. Figure 1 shows the least square curve fitting of the
actual discrete power functions of these two processors with
the form af3+b. As we can see, the XScale is quite accurate
while the PPC405LP is not.
The cubic-root rule of power versus frequency function

naturally leads to using e(f) = αf2 + β to approximate
the actual energy versus cycle function, the minimization
problem becomes

Minimize
∑

0≤i≤r

si · Fi · f
2
i

Subject to
∑

0≤i≤r

si
fi
≤ D

Notice that α and β have no effect on deciding the speed
schedule. Assuming that fi is continuous, using the La-
grange technique or Jensen’s inequality, the solution to the
above mathematical program is

fi =

∑

0≤j≤r

sj · F
1
3

j

D · F
1
3

i

However, fi needs to be rounded to some available discrete
frequency. This is where PACE and GRACE differ. The
GRACE scheme is conservative in the sense that it rounds
fi up to the closest higher discrete frequency, whereas the
PACE scheme rounds fi to the closest discrete frequency.
Both schemes have shortcomings. For the GRACE scheme,
fi could be larger than the highest discrete frequency if Fi is
very small. If this happens, fi will have to be rounded down
to the highest discrete frequency freqM , and therefore the
deadline could be missed (considering that most of fi’s do
not have this problem and they are rounded up, the proba-
bility of missing deadline should be reasonably small). For
the PACE scheme, chances of missing the deadline are high,
because PACE may round down. To solve this problem,
PACE proposes to linearly scan all the phases to adjust the
speeds. But this still does not guarantee that the deadline
will not be missed. If this happens, PACE will simply use a
default speed schedule [10].

56

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 50 100 150 200 250 300 350

P
ow

er
 (

m
W

)

Frequency (MHz)

Actual descrete power function
Least square fitting with ax3+b

(a) PPC405LP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 100 200 300 400 500 600 700 800 900 1000

P
ow

er
 (

m
W

)

Frequency (MHz)

Actual descrete power function
Least square fitting with ax3+b

(b) Intel XScale

Figure 1: Applying the cubic-root rule to approximate the actual power functions

4. FAST EXACT OPTIMAL ALGORITHM
First, we state the sufficient condition for nondecreasing

speeds as the task progresses (Theorem 1). Theorem 1 is
a necessary condition for using the fast exact optimal algo-
rithm.

Theorem 1. If s0 = s1 = · · · = sr, then there exists an
optimal schedule in which f0 ≤ f1 ≤ · · · ≤ fr.

Proof. Suppose there exist phase i and phase j such that
i < j and fi > fj in the optimal speed schedule. The energy
consumed by these two phases is E1 = si ·Fi · e(fi)+ sj ·Fj ·
e(fj) and the time spent in these two phases is T1 = si

fi
+

sj

fj
.

Now we switch the frequencies of phase i and phase j to
obtain a new speed schedule, that is, phase i uses frequency
fj and phase j uses frequency fi. The energy consumed by
these two phases becomes E2 = si · Fi · e(fj) + sj · Fj · e(fi)
and the time spent in these two phases is T2 = si

fj
+

sj

fi
.

Obviously we have T1 = T2, which implies the new speed
schedule is also feasible (i.e., tasks finish before deadlines).
However, the energy consumed in the new schedule is larger
than in the original schedule since

E1 − E2 = siFie(fi) + sjFje(fj)− (siFie(fj) + sjFje(fi))

= (e(fi)− e(fj)) · (siFi − sjFj)

≥ 0

The inequality holds because e(fi) > e(fj) and Fi ≥ Fj . and
the equality holds if and only if Fi = Fj . If this is the case,
the new schedule is another optimal schedule. If Fi > Fj ,
the new schedule achieves less expected energy consumption
which contradicts the optimality of the original schedule.

The task cycle distribution is generally estimated using
nonparametric methods [10, 20]. In particular, histogram
is used because of its simplicity and effectiveness. When
a histogram is used, the boundaries of bins [20] are nat-
urally chosen to be the transition points, where we have
s0 = s1 = · · · = sr. In this case, the speeds are nondecreas-
ing as the task progresses in the optimal schedule 2. Further-
more, the number of available discrete frequencies is usually

2If we use the heuristic described in [11] to choose transition
points, where we cannot guarantee that s0 = s1 = · · · =

less than the number of transition points. Therefore there
are at most M − 1 speed changes in the optimal schedule.
Let the number of phases running at frequency freqi be ni.

Thus, we have
∑

1≤i≤M

ni = r+1. From Theorem 1, it is clear

that we can use a brute force approach to try all the possible
values of ni and compare the corresponding expected en-
ergy. Notice that once n1, n2, . . . , nM−2 are decided, nM−1

and nM can be decided in constant time. This results in a

straightforward algorithm running in Θ
(

(

r+M−1
M−2

)

· r
)

time.

The complexity of the algorithm can be further reduced

to Θ
(

(

r+M−1
M−2

)

)

by using an extra Θ(r) space. This is

done by computing a cumulative cdf, defined as ccdf(k) =
∑k

i=1 cdf(i), before the brute force search.
This algorithm is easy to implement and good for smallM

and r. For example, the system in [12] has only 3 available
discrete frequencies; if we set r = 100, the number of possi-
bilities is just 103. But for largeM and r, this algorithm be-

comes impractical since Θ
(

(

r+M−1
M−2

)

)

= Ω

(

(

r+M−1
M−2

)M−2
)

.

We solve this problem with the algorithm provided in the
next section.

5. A FULLY POLYNOMIAL TIME
APPROXIMATION SCHEME

In this section, we present a fully polynomial time approx-
imation scheme which we call PPACE (Practical PACE).

5.1 Preliminaries

Definition 1. A energy-time label l is a 2-tuple (e, t),
where e and t are nonnegative reals and denote energy and
time respectively. We write the energy component as l.e and
the time component as l.t.

Definition 2. The ”+” is defined as a binary operator
on energy-time labels such that if (e1, t1) and (e2, t2) are two
energy-time labels, then (e1, t1)+ (e2, t2) = (e1 + e2, t1 + t2).

sr, then the speeds are not necessarily nondecreasing in the
optimal schedule, which contradicts with the results in [11].
Further investigation on this issue is warranted.

57

(s0F0e(freqM), s0/freqM)

(s0F0e(freq0), s0/freq0)

(s0F0e(freq1), s0/freq1)

(s1F1e(freqM), s1/freqM)

(s1F1e(freq0), s1/freq0)

(s1F1e(freq1), s1/freq1)

(srFre(freqM), sr/freqM)

(srFre(freq0), sr/freq0)

(srFre(freq1), sr/freq1)

v0 v1 v2 vr+1
vr

Phase 0 Phase 1 Phase r

.

.

.

.

.

.

.

.

.

. . .

. . .

Figure 2: Graphical representation of the problem

The problem can be expressed as a graph G = (V,E)
shown in Figure 2. Vertex vi (1 ≤ i ≤ r + 1) represents the
point where the first i phases have been executed. The M
edges between vi and vi+1 (0 ≤ i ≤ r) represent different
choices (which frequency to use) for phase i. Each choice is
represented by a energy-time label, indicating the expected
energy consumption and the worst-case running time for
that phase. We also associate each path in the graph with
a energy-time label where the energy of a path is defined
as the sum of the energy of all edges over the path and the
time of a path is defined as the sum of the time of all edges
over the path. Therefore, the problem is reduced to finding
a path from v0 to vr+1 such that the energy of the path is
minimized while the time of the path is no greater than the
deadline D.
Notice that a path now can be summarized as a energy-

time label. A straightforward approach is to start from v0

and working all the way from left to right in an iterative
manner. Each vertex vi is associated with a energy-time
label set LABEL(i). Initially all label sets are empty ex-
cept LABEL(0) which contains only one energy-time label
(0, 0). The whole process consists of r + 1 iterations. In
the ith iteration, we generate all paths from v0 to vi from
LABEL(i − 1) and store them in LABEL(i). At the end,
we just select the energy-time label with the minimum en-
ergy and with time no greater than D, from LABEL(r+1),
as the solution to the problem.
Unfortunately, the size of LABEL(i) may suffer from ex-

ponential growth in this naive approach. To prevent this
from happening, the key idea is to reduce and limit the size
of LABEL(i) after each iteration by eliminating some of
the energy-time labels in LABEL(i). There are two types
of eliminations: one that does not affect the optimality of
the solution and one that may affect optimality but still
allows for performance guarantee.

5.2 Eliminations not Affecting Optimality
There are three eliminations for LABEL(i) that do not

affect the optimality of the solution:

1. For any energy-time label l in LABEL(i), if l.t +
∑

i<j≤r sj

freqM
> D, we eliminate this label. This is be-

cause even if the maximum frequency is used after this
point, the deadline will still be missed; this implies la-
bel l will not lead to any feasible solution.

2. For the second elimination, we need to compare two
energy-time labels.

Definition 3. Let (e1, t1) and (e2, t2) be two energy-
time labels. We say that (e1, t1) dominates (e2, t2)(denoted
by (e2, t2) ≺ (e1, t1)) if e1 ≤ e2 and t1 ≤ t2.

The dominance relation on a set of energy-time labels
is clearly a partial ordering on the set. If (e2, t2) ≺
(e1, t1), this means (e2, t2) will not lead to any solu-
tion better than the best solution which (e1, t1) leads
to. Therefore, we eliminate all energy-time labels that
are dominated by some other energy-time label in the
same label set.

To facilitate this elimination, the energy-time labels
in label sets are stored in decreasing order of the en-
ergy component, breaking ties with smaller time com-
ponent coming ahead. Thus, this elimination can be
performed using a linear scan of the label set.

3. For any energy-time label l in LABEL(i) surviving the
previous two eliminations, one can use some heuristic
to compute the upper bound of the optimal solution.
One simple heuristic is to first find the optimal contin-
uous frequency assuming that the task will run for the
worst-case cycles, round it up and then compute the
expected energy consumption assuming that this fre-
quency is used from this point on. This energy plus l.e
is an estimate of the upper bound of the optimal solu-
tion. Note that this operation can be done in constant
time. We find the smallest estimated upper bound
among all energy-time labels in LABEL(i), say U ,
then we do a linear scan of LABEL(i) to eliminate
all energy-time labels whose energy is greater than U .

With the eliminations above, the size of LABEL(i) would
decrease substantially. Notice that at this point the optimal
solution is guaranteed to be found. However, the running
time of the algorithm still has no polynomial time bound
guarantee. Inspired by the fully polynomial time approxi-
mation scheme (FPTAS) of the subset-sum problem [5], we
obtain a FPTAS for our problem, presented next. The FP-
TAS, further reduces the size of LABEL(i).

5.3 Eliminations Affecting Optimality
The intuition for the FPTAS is that we need to further

trim each LABEL(i) at the end of each iteration. A trim-
ming parameter δ (0 < δ < 1) will be used to direct the

58

trimming. To trim a energy-time label set L by δ means
to remove as many energy-time labels as possible, in such
a way that if L′ is the result of trimming L, then for ev-
ery energy-time label l that was removed from L, there is
an energy-time label l′ < l still in L′ such that l.t > l′.t

and l′.e−l.e
l.e

≤ δ (or, equivalently, l.e ≤ l′.e ≤ (1 + δ) · l.e).
This means that the energy difference between these labels
is smaller than δ.
Such a l′ can be thought of as “representing” l in the

new energy-time label set L′. Note that L′ ⊆ L. Let the
performance guarantee be ε (0 < ε < 1), which means that
the solution will be within a factor of 1 + ε of the optimal
solution. After the first type of elimination described in
Section 5.2, LABEL(i) is trimmed using a parameter δ =
ln(1+ε)
r+1

. The choice of δ shall be clear later in the proof of
Theorem 2.
The procedure TRIM (shown in Figure 3) performs the

second type of elimination for label set L. Notice that at
this point, the energy-time labels in label sets are stored in
decreasing order on the energy component(or in increasing
order on the time component).

PROCEDURE TRIM(L = [l1, l2, . . . , l|L|],δ)
1. L′ := {l1 }
2. last := l1
3. for i := 2 to |L| do
4. if last.e > (1 + δ) · li.e then
5. append li onto the end of L′

6. last := li
7. return L′

END

Figure 3: TRIM(L,δ)

5.4 The PPACE Algorithm
The PPACE algorithm is shown in Figure 4. For the sake

of simplicity and clarity of presentation, the described algo-
rithm is not the most efficient. We have a smarter imple-
mentation that makes the algorithm run faster but still has
the same asymptotic behavior.

Considering the speed change overhead
The problem formulation in (1)-(2) cannot capture the speed
change overheads. This means that GRACE and PACE can-
not deal with the speed change overheads simply because
their solutions are based on the mathematical solution to
(1)-(2). However, the PPACE algorithm can take into con-
sideration the speed change overheads with a slight modi-
fication. Since the time penalty and energy penalty for a
speed change depend on the speed before changing and the
speed after changing [4], we only need to modify Line 7 of the
PPACE algorithm such that if the chosen frequency for the
current phase is different from that for the previous phase,
we add the energy overhead to the energy component and
add the time penalty to the time component of the newly
generated energy-time label.
In our experience with PPC750 embedded processors, we

have observed (and the datasheets from the manufacture
dictate) that the CPU will halt for a significant amount of
time (10-50ms) each time the speed changes. The AMD
PowerNow! processors have the same characteristic. For

ALGORITHM PPACE(ε)
1. for i := 1 to r + 1 do
2. LABEL(i) := φ
3. LABEL(0) = {(0, 0)}
4. for i := 1 to r + 1 do
5. for each label l ∈ LABEL(i− 1) do
6. for each available frequency f do
7. LABEL(i) := LABEL(i) ∪ (l + (siFie(f),

si

f
))

8. remove all l ∈ LABEL(i) such that

l.t+
∑

i<j≤r sj

freqM
> D

9. remove all l ∈ LABEL(i) such that l ≺ l′

where l′ 6= l and l′ ∈ LABEL(i)
10. estimate the upper bound U , remove all

l ∈ LABEL(i) such that l.e > U

11. LABEL(i) = TRIM(LABEL(i), ln(1+ε)
r+1

)
12. return the label l ∈ LABEL(r + 1) with the

minimum energy component
END

Figure 4: PPACE algorithm

these types of processors it is important to take into ac-
count the speed change overhead. However, for fair compar-
ison with PACE and GRACE, we assume the speed change
overhead is zero throughout the paper.

Next, we show some results on the algorithm PPACE.
First, notice that line 11 of the algorithm corresponds to
the TRIM procedure, that is, the second type of eliminations
(see Section 5.3). Let LABEL′(i) (0 ≤ i ≤ r + 1) be the
label set obtained if line 11 of the algorithm PPACE is omit-
ted. Notice that LABEL(i) ⊆ LABEL′(i) and the optimal
solution is in LABEL′(r + 1). By comparing LABEL(i)
and LABEL′(i), we have the following lemma:

Lemma 1. For every energy-time label l′ ∈ LABEL′(i),
there exists a label l ∈ LABEL(i) such that l′.e ≤ l.e ≤
(1 + δ)i · l′.e and l′.t ≥ l.t

Lemma 1 shows how the error accumulates after each it-
eration when comparing label sets obtained with the second
type of elimination and label sets obtained without the sec-
ond type of elimination. For the details of the proof, see
[18].

Theorem 2. PPACE is a fully polynomial-time approx-
imation scheme, that is, the solution that PPACE returns
is within a factor of 1 + ε of the optimal solution and the
running time is polynomial in 1/ε.

Proof. Let l∗ denote an optimal solution. Obviously
l∗ ∈ LABEL′(r + 1). Then, by Lemma 1 there is a l ∈
LABEL(r + 1) such that

l∗.e ≤ l.e ≤ (1 + δ)r+1 · l∗.e

Since

(1 + δ)r+1 =

(

1 +
ln(1 + ε)

r + 1

)r+1

≤ eln(1+ε)

= 1 + ε

59

then

l.e ≤ (1 + ε) · l∗.e

Therefore, the energy returned by PPACE is not greater
than 1 + ε times the optimal solution.
To show that its running time is polynomial in 1/ε, we first

need to derive the upper bound on the size of LABEL(i).
Let LABEL(i) = [l1, l2, . . . , lk] after trimming. We observe
that the energies of any two successive energy-time labels
differ by a factor of more than (1 + δ) (otherwise, we have
already eliminated it). In particular,

l1.e > (1 + δ) · l2.e

> (1 + δ)2 · l3.e

...

> (1 + δ)k−1 · lk.e

Moreover, l1.e ≤ e(freqM)
∑

0≤j≤i sj · Fj and lk.e ≥

e(freq1)
∑

0≤j≤i sj · Fj . Let λ = e(freqM)
e(freq1)

(i.e., the ratio

of the energies when running with the highest and lowest
frequencies), then

(1 + δ)k−1 <
l1.e

lk.e
≤ λ

or, equivalently

k < 1 +
lnλ

ln(1 + δ)

≤ 1 +
lnλ
δ

1+δ

= 1 + lnλ · (1 +
1

δ
)

= 1 + lnλ ·

(

1 +
r + 1

ln(1 + ε)

)

= O(
r · lnλ

ε
) (3)

Now we can derive the running time of PPACE. There
are r + 1 iterations (line 4). The processing time in each
iteration is linear in the number of energy-time labels (line
5) generated, which, from Equation 3, is in O(r·lnλ

ε
). The

running time is also a function of the number of speeds, M
(line 6). Thus, the total running time is O(r2 ·M · lnλ

ε
).

In fact, the running time of PPACE depends entirely on
the total number of energy-time labels stored in all the ver-
tices which is

∑r+1
i=0 LABEL(i). The approximation guar-

antee reflects the performance of the algorithm only on the
most pathological instances. In our experimental results, we
observe that using ε = 5% usually gives a solution which is
within 0.1% of the optimal solution and the total number of
energy-time labels stored in all the vertices is much smaller
than that acquired from the worst-case analysis.
The running time of PPACE is obviously higher than

PACE and GRACE, which is O(r · M). However, as in
PACE, the speed schedules can be precomputed and stored
in a table [12]. Determining a speed schedule on-the-fly in-
volves only a binary search through the table. Thus, PPACE
is very suitable for dynamically discovering the close-to-
optimal speed schedules.
The space complexity of PPACE, assuming the transition

points are chosen as the boundaries of histogram bins (as

in [20]) or according to PACE’s heuristic, will be O(M ·
r·lnλ
ε

). This is because speeds are nondecreasing as the task
progresses, so the speed schedule can be expressed using
M integers, as mentioned in Section 4. We attach a speed
schedule to each energy-time label in the label sets and hence
the space complexity. If the transition points do not satisfy

Theorem 1, then the space complexity becomes O(r
2·lnλ
ε

).

6. PERFORMANCE EVALUATION
We compare the three algorithms (GRACE, PACE, and

PPACE) using different power models and cycle distribu-
tions for tasks. The power models used were IBM PPC405LP
(Table 1), Intel XScale (Table 2), and a synthetic ideal pro-
cessor (Table 3). The idle power for PPC405LP is 12mW.
Since we do not have the idle power number for XScale,
we assume that its idle power is one half of the power con-
sumed at the minimum frequency, that is, 40mW. The syn-
thetic ideal processor strictly conforms to the p = f 3 power-
frequency relation and has 10 discrete frequencies ranging
from 100MHz to 1000MHz with 100MHz step; its idle power
is zero. With this synthetic processor, the power function
in PACE and GRACE is exact and represents the best case
for those algorithms.
The length of tasks in cycles follow normal, uniform and

bimodal distributions (Figure 5 shows the histograms of
the three distributions). The worst-case number of cycles,
WC, is 500, 000, 000 and the minimum number of cycles is
5, 000, 000. The number of transition points is 100 and they
are placed evenly in the range of [1,WC]. This implies the
distributions can be expressed with 100-bin histograms (ac-
cording to our experience, 100 bins are enough to describe
the cycle distribution).
We define the relative error for any algorithm that re-

turns the expected energy consumption Egr to be Egr−OPT
OPT

,
where OPT is the optimal solution. We compute OPT using
the PPACE algorithm without doing the trimming operation
at the expense of much longer running time. As usual with
FPTAS algorithms, we set ε = 0.05 for PPACE when com-
paring it with GRACE and PACE. For all experiments, we
vary the slack available for power management in the X axis.
The slack is changed by varying the deadline from WC

freqM
to

WC
freq1

(increasing the deadline will increase the slack, that
is, will increase the allotted time for the task, thus allowing
for better power management).
We do not show all the results (for all distributions) be-

cause results for all distributions were similar (for compre-
hensive results, see [18]). PPACE performs very well. As
shown in Figures 6(b)-8(b), the measured relative errors
are always below 0.1%, 1.5%, 2.5% for ε = 0.05, 0.1, 0.15,
respectively. This means that, in practice, the algorithms
perform much better (approximately a 5-fold increase) than
the performance guarantees they offer. While still meeting
all deadlines, this knowledge allows system designers to set
the parameter ε higher than required, in order to speed up
the algorithm execution.
We compare PPACE, GRACE, and PACE in Figures 6(a)-

8(a). We can see that (as mentioned above) PPACE’s per-
formance is very close to optimal.
On the other hand, the relative errors of GRACE and

PACE depend on the power model, cycle distribution, and
the deadline. For the ideal processor (Figure 6(a)) when
the relative errors of GRACE and PACE only result from

60

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

0

10

20

30

40

50

60

70

Cycle

(a) Normal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

0

5

10

15

20

25

30

35

40

45

Cycle

(b) Uniform

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

0

10

20

30

40

50

60

70

80

Cycle

(c) Bimodal

Figure 5: Cycle distributions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
el

at
iv

e
E

rr
or

Deadline (sec)

GRACE
PACE

PPACE(ε = 0.05)

(a) Comparison of GRACE, PACE, and PPACE

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

R
el

at
iv

e
E

rr
or

Deadline (sec)

ε = 0.15
ε = 0.10
ε = 0.05

(b) Effect of different ε on the relative error

Figure 6: Ideal processor, bimodal distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
E

rr
or

Deadline (sec)

GRACE
PACE

PPACE(ε = 0.05)

(a) Comparison of GRACE, PACE, and PPACE

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 2 4 6 8 10 12 14 16

R
el

at
iv

e
E

rr
or

Deadline (sec)

ε = 0.15
ε = 0.10
ε = 0.05

(b) Effect of different ε on the relative error

Figure 7: PPC405LP processor, bimodal distribution

61

Table 3: Ideal processor speed settings and power consumptions
Speed (MHz) 100 200 300 400 500 600 700 800 900 1000

Power (mW) 1003 2003 3003 4003 5003 6003 7003 8003 9003 10003

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 1 1.5 2 2.5 3 3.5

R
el

at
iv

e
E

rr
or

Deadline (sec)

GRACE
PACE

PPACE(ε = 0.05)

(a) Comparison of GRACE, PACE, and PPACE

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.5 1 1.5 2 2.5 3 3.5

R
el

at
iv

e
E

rr
or

Deadline (sec)

ε = 0.15
ε = 0.10
ε = 0.05

(b) Effect of different ε on the relative error

Figure 8: XSCALE processor, bimodal distribution

rounding, PACE always performs better than GRACE; we
note that even in the ideal processor case, PACE’s relative
error can be up to 40% [18]. But for the PPC405LP and
XScale, neither PACE nor GRACE are clear winners. For
example, for PPC405LP and the bimodal cycle distribution
(similar results are obtained for the uniform and normal dis-
tributions), when the deadline is small or large, PACE does
better than GRACE. But when the deadline is in the middle
range, it is the other way around. GRACE’s relative error
can be up to 140% and PACE’s can be up to 100%. In fact,
the effect of two approximations(i.e., using well-defined func-
tions to approximate the actual power function and round-
ing) could compound or cancel each other out. Thus the end
effect is unpredictable. In other words, GRACE and PACE
are not as stable as PPACE.
From Figure 9 we can also see that the average size of label

sets increases when ε decreases, but they are relatively small
(specially for the two real-life embedded processors shown
in Figures 9(b) and 9(c)). It is also true that when M ,
the number of discrete speeds, increases, the label set size
increases; this can be seen comparing the ideal processor,
XScale, and PPC405LP results. (Note that the scale of the
Y axis is different for each processor model.)

7. CONCLUSIONS
We studied, from a practical point of view, the prob-

lem of finding optimal speed schedules for embedded sys-
tems with tasks whose computational requirements are only
known probabilistically. We took the processor idle power
into account and thus avoided the abnormality of inefficient
frequencies. We solved the problem by using efficient combi-
natorial algorithms that apply directly to the case of discrete
speeds and do not make any assumption about the shape of
the power function. In summary:

1. We provide an efficient approximation algorithm with
performance guarantee for computing the near-optimal

solution. We also identify the conditions when a sim-
ple, fast, exact algorithm is applicable;

2. We showed how our algorithms can consider non-zero
idle power and the overhead of changing speeds;

3. By using our algorithm, we provide an accurate esti-
mation on energy consumption of the optimal solution
to the problem (because our FPTAS algorithms are so
close to optimal, we deem this a good estimation);

4. We evaluated the effect of using well-defined functions
and rounding in GRACE and PACE. We found that:
(1) PACE outperforms GRACE in most cases; (2)
When the actual power function is close to well-defined
functions, PACE performs reasonably well; (3) When
the deadline is at two extremes, that is, tight and loose,
PACE performs much better than the other cases.

Future work will be evaluating our algorithm in the real-
world embedded systems. Currently we are investigating
two applications, known as Event Extraction and Complex
Ambiguity Function (or CAF for short) with our industrial
research partners. The computing system under considera-
tion is a uniprocessor real-time system that serves incoming
requests on a first-come-first-serve basis without preemp-
tion. In CAF, the requests arrive at fixed arrival rate while
the arrival rate may vary in Event Extraction. Our algo-
rithm is expected to work very well in CAF. However, the
problem is more challenging in Event Extraction. This is
because we have the situation where other requests could
arrive during the execution of a request. Thus, we are faced
with the problem of minimizing the expected energy con-
sumption by multiple tasks subject to different deadlines.
We will investigate how to extend our algorithm to deal
with the new problem.

62

 0

 50

 100

 150

 200

 250

 300

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 L
ab

el
 S

et
 S

iz
e

Deadline (sec)

ε = 0.05
ε = 0.10
ε = 0.15

(a) Ideal processor

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.5 1 1.5 2 2.5 3 3.5

A
ve

ra
ge

 L
ab

el
 S

et
 S

iz
e

Deadline (sec)

ε = 0.05
ε = 0.10
ε = 0.15

(b) XScale processor

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 L
ab

el
 S

et
 S

iz
e

Deadline (sec)

ε = 0.05
ε = 0.10
ε = 0.15

(c) PP405LP processor

Figure 9: Average Label Set Size vs. deadline in PPACE with bimodal distribution

8. REFERENCES
[1] N. AbouGhazaleh, D. Mossé, B. Childers, R. Melhem,

and Matthew Craven. Collaborative Operating System
and Compiler Power Management for Real-Time
Applications. In The 9th IEEE Real-Time Embedded
Technology and Applications Symposium(RTAS 2003),
May 2003.

[2] H. Aydin, R. Melhem, D. Mossé, and P. M. Alvarez.
Dynamic and Aggressive Scheduling Techniques for
Power-Aware Real-Time Systems. In Proceedings of
the 22nd Real-Time Systems Symposium (RTSS’01),
2001.

[3] D. Brooks, P. Bose, S. Schuster, H. Jacobson,
P. Kudva, A. Buyuktosunoglu, J. Wellman,
V. Zyuban, M. Gupta, and P. Cook. Power-aware
microarchitecture: design and modeling challenges for
next generation microprocessors. IEEE Micro, 20(6),
2000.

[4] T. Burd and R. Brodersen. Design issues for Dynamic
Voltage Scaling. In Proceedings of International
Symposium on Low Power Electronics and Design
(ISLPED-00), June 2000.

[5] T. Cormen, C. Leiserson, and R. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, 1990.

[6] F. Gruian. Hard Real-Time Scheduling for
Low-Energy Using Stochastic Data and DVS
Processors. In International Symposium on Low
Power Electronics and Design, Aug. 2001.

[7] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava.
Synthesis Techniques for Low-Power Hard Real-Time
Systems on Variable Voltage Processors. In
Proceedings of the 19th IEEE Real-Time systems
Symposium (RTSS’98), Madrid, Spain, December
1998.

[8] T. Ishihara and H. Yasuura. Voltage Scheduling
Problem for Dynamically Variable Voltage Processors.
In International Symposium on Low Power Electronics
and Design, pages 197–202, Aug. 1998.

[9] S. Krantz, S. Kress, and R. Kress. Jensen’s Inequality.
Birkhauser, 1999.

[10] J. Lorch. Operating Systems Techniques for Reducing
Processor Energy Consumption. PhD thesis,
University of California at Berkeley, 2001.

[11] J. Lorch and A. Smith. Improving Dynamic Voltage
Scaling Algorithms with PACE. In ACM
SIGMETRICS, June 2001.

[12] J. Lorch and A. Smith. Operating system
modifications for task-based speed and voltage
scheduling. In the First International Conference on
Mobile Systems, Applications, and Services (MobiSys),
May 2003.

[13] D. Luenberger. Linear and Nonlinear Programming.
Addison-Wesley, Reading, Massachusetts, 1984.

[14] S. Saewong and R. Rajkumar. Practical
Voltage-Scaling for Fixed-Priority RT-Systems. In
Proceedings of the 9th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’03),
May 2003.

[15] N.H.E. Weste and K. Eshraghian. Principles of CMOS
VLSI Design. Addison-Wesley, Reading, MA, 1993.

[16] F. Xie, M. Martonosi, and S. Malik. Compile-Time
Dynamic Voltage Scaling Settings: Opportunities and
Limits. In Programming Language Design and
Implementation (PLDI 2003), June 2003.

[17] Intel XScale Microarchitecture.
http://developer.intel.com/design/intelxscale/bench
marks.htm.

[18] R. Xu, C. Xi, R. Melhem, and D. Mossé.
Discrete PACE. Technical Report TR-04-108,
Department of Computer Science, University of
Pittsburgh, 2004.
http://www.cs.pitt.edu/∼xruibin/publications/dpace.pdf.

[19] F. Yao, A. Demers, and S.Shankar. A Scheduling
Model for Reduced CPU Energy. In IEEE Annual
Foundations of Computer Science, pages 374–382,
1995.

[20] W. Yuan and K. Nahrstedt. Energy-Efficient Soft
Real-Time CPU Scheduling for Mobile Multimedia
Systems. In ACM SOSP’03, October 2003.

63

http://developer.intel.com/design/intelxscale/benchmarks.htm
http://www.cs.pitt.edu/~xruibin/publications/dpace.pdf

	Introduction
	Problem Formulation
	Theoretical Optimal Formulation
	Piecewise constant speed schedules
	The Impact of Idle Power

	Review of Previously Known Schemes
	Fast Exact Optimal Algorithm
	A Fully Polynomial Time Approximation Scheme
	Preliminaries
	Eliminations not Affecting Optimality
	Eliminations Affecting Optimality
	The PPACE Algorithm

	Performance Evaluation
	Conclusions
	REFERENCES -9pt

