skip to main content
10.1145/1024393.1024397acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
Article

An ultra low-power processor for sensor networks

Published:07 October 2004Publication History

ABSTRACT

We present a novel processor architecture designed specifically for use in low-power wireless sensor-network nodes. Our sensor network asynchronous processor (SNAP/LE) is based on an asynchronous data-driven 16-bit RISC core with an extremely low-power idle state, and a wakeup response latency on the order of tens of nanoseconds. The processor instruction set is optimized for sensor-network applications, with support for event scheduling, pseudo-random number generation, bitfield operations, and radio/sensor interfaces. SNAP/LE has a hardware event queue and event coprocessors, which allow the processor to avoid the overhead of operating system software (such as task schedulers and external interrupt servicing), while still providing a straightforward programming interface to the designer. The processor can meet performance levels required for data monitoring applications while executing instructions with tens of picojoules of energy.We evaluate the energy consumption of SNAP/LE with several applications representative of the workload found in data-gathering wireless sensor networks. We compare our architecture and software against existing platforms for sensor networks, quantifying both the software and hardware benefits of our approach.

References

  1. A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth, U. V. Cummings, and T.K. Lee. The Design of an Asynchronous MIPS R3000. 17th Conference on Advanced Research in VLSI, September 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. J. Martin, et al. The Lutonium: A Sub-Nanojoule Asynchronous 8051 Microcontroller 9th IEEE Symposium on Asynchronous Circuits and Systems, May 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. J. Martin. The Limitations to Delay-Insensitivity in Asynchronous Circuits. Sixth MIT Conf. on Advanced Research in VLSI, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Manohar, A. J. Martin. Quasi-Delay-Insensitive Circuits are Turing-Complete. 2nd International Symposium on Advanced Research in Asynchronous Circuits and Systems (invited). March 1996.Google ScholarGoogle Scholar
  5. B. A. Warneke et al. An Autonomous 16mm3 Solar-Powered Node for Distributed Wireless Sensor Networks. Proceedings of Sensors'02. 2002.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Bayrashev, A. Parker, W.P. Robbins, B. Ziaie. Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems. 2003.Google ScholarGoogle ScholarCross RefCross Ref
  7. S.M. Burns and A.J. Martin. Performance Analysis and Optimization of Asynchronous Circuits. Advanced Research in VLSI: Proc. of the 1991 UC Santa Cruz Conference, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T.E. Williams. Self-Timed Rings and their Application to Division. Ph.D. thesis, Computer Systems Laboratory, Stanford University, May 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J.A. Brzozowski and C.-J.H. Seger. Asynchronous Circuits. Springer-Verlag, 1994.Google ScholarGoogle Scholar
  10. T. Rappaport. Wireless Communications. Prentice-Hall, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. C. Lutz et al. Design of the Mosaic Element. http://resolver.library.caltech.edu/caltechCSTR:1983.5093-tr-83Google ScholarGoogle Scholar
  12. M. Taylor. The Raw Prototype Design Document. ftp://ftp.cag.lcs.mit.edu/pub/raw/documents/RawSpec99.pdf. 2002.Google ScholarGoogle Scholar
  13. H. Li, A. Lal. Radioisotape-Powered Cantilever for Vacuum Sensing with RF Transmission. Proceedings of 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems. 2003.Google ScholarGoogle Scholar
  14. D. M. Chapiro. Globally Asynchronous Locally Synchronous Systems. PhD Thesis, Stanford University, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. W. J. Dally et al. The Message-Driven Processor: A Multicomputer Processing Node with Efficient Mechanisms. IEEE Micro, pages 23--39, April 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. Guo, A. Lal. Nanopower Betavoltaic Microbatteries. Proceedings of 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems 2003.Google ScholarGoogle Scholar
  17. S. Meninger, J. O. Mur-Miranda, R. Amirtharaja, A. Chandrakasan, J. Lang. Vibration-to-electric energy conversion. Proceedings of the 1999 International Symposium on Low power electronics and design. 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. N. Ekanayake, R. Manohar. Asynchronous DRAM Design and Synthesis. Proceedings of the 9th IEEE Symposium on Asynchronous Circuits and Systems, May 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Tong, Q. Zhao, and S. Adireddy. Sensor Networks with Mobile Agents. Proceedings of IEEE Military Communication Conference, Oct 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. C. Kelly, V. N. Ekanayake, R. Manohar. SNAP: A Sensor-Network Asynchronous Processor. Proceedings of the 9th IEEE Symposium on Asynchronous Circuits and Systems, May 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. Kuskin, D. Ofelt, M. Heinrich, et al., The Stanford FLASH Multiprocessor. Proceedings of the 21st International Symposium on Computer Architecture, April 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Radio Frequency Monolithics (RFM) TR1000 916.50Mhz transceiver chip datasheet. Available: www.rfm.com/products/data/tr1000.pdfGoogle ScholarGoogle Scholar
  23. Chipcon CC1000 radio transceiver datasheet. Available: http://www.chipcon.com/index.cfm?kat_id=2&subkat_id=12&dok_id=14Google ScholarGoogle Scholar
  24. CoolRISC Microcontroller Datasheet. Available:http://www.xemics.com/internet/products/products.jsp?productID=26Google ScholarGoogle Scholar
  25. Intel PXA255 XScale Processor Datasheet. Available: http://www.intel.com/design/pca/prodbref/252780.htmGoogle ScholarGoogle Scholar
  26. Atmel ATMega128L AVR Microcontroller Datasheet. Available: http://www.atmel.comGoogle ScholarGoogle Scholar
  27. Intel Mote Research Project. Available: http://www.intel.com/research/exploratory/motes.htmGoogle ScholarGoogle Scholar
  28. M. Renaudin, P. Vivet and F. Robin. ASPRO-216: A Standard-Cell QDI 16-bit RISC Asynchronous Microprocessr. Proc. of 4th International Symposium on Advanced Research in Asynchronous Circuits and Systems. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. A. Mainwaring et al. Wireless Sensor Networks for Habitat Monitoring. 2002 ACM International Workshop on Wireless Sensor Networks and Applications. Sep 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wireless Integrated Network Sensors, University of California, Los Angeles, Available: http://wins.rsc.rockwell.comGoogle ScholarGoogle Scholar
  31. Wireless Sensing Networks Project, Rockwell Scientific. Available: http://wins.rsc.rockwell.comGoogle ScholarGoogle Scholar
  32. C. E. Perkins, E. M. Royer. Ad hoc On-Demand Distance Vector Routing. Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications. Feb 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Standard 802.11, June 1999.Google ScholarGoogle Scholar
  34. D. R. Hanson, C. W. Fraser. A Retargetable C Compiler: Design and Implementation. Addison-Wesley, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister. System architecture directions for network sensors. ASPLOS 2000. Nov 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. T. D. Burd, T. A. Pering, A. J. Stratakos, R. Brodersen. Dynamic Voltage Scaled Microprocessor System. IEEE Journal of Solid-State Circuits, vol. 35, pp. 1571-1580, Nov. 2000.Google ScholarGoogle ScholarCross RefCross Ref
  37. S. B. Furber, D. A. Edwards and J. D. Garside. AMULET3: a 100 MIPS Asynchronous Embedded Processor. ICCD'00. 17-20th September 2000.Google ScholarGoogle ScholarCross RefCross Ref
  38. A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, and P.J. Hazewindus. The Design of an Asynchronous Microprocessor. ARVLSI: Decennial Caltech Conference on VLSI, ed. C.L. Seitz, 351--373, MIT Press, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. R. Manohar, M. Nystrom, A. J. Martin. Precise Exceptions in Asynchronous Processors. Proceedings of the 19th Conference on Advanced Resesarch in VLSI. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. J. Tierno, R. Manohar, A.J. Martin. The Energy and Entropy of VLSI Computations. Proceedings of the 2nd International Conference on Advanced Research in Asynchronous Circuits and Systems, pp. 188--196, March 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. TinyOS Tutorial. http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/tutorial/index.htmlGoogle ScholarGoogle Scholar
  42. N. Lee, P. Levis, J. Hill. Mica High Speed Radio Stack. http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/stack.pdf. September 2002.Google ScholarGoogle Scholar
  43. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler. The nesC Language: A Holistic Approach to Networked Embedded Systems. ACM SIGPLAN Conference on Programming Language Design and Implementation. 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. B.A. Warneke, K.S.J. Pister. An Ultra-Low Energy Microcontroller for Smart Dust Wireless Sensor Networks. International Solid-State Circuits Conf., February 2004.Google ScholarGoogle Scholar
  45. B.A. Warneke, et al., Smart Dust: Communicating with a Cubic-Millimeter Computer. Computer Magazine, Jan 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An ultra low-power processor for sensor networks

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                ASPLOS XI: Proceedings of the 11th international conference on Architectural support for programming languages and operating systems
                October 2004
                296 pages
                ISBN:1581138040
                DOI:10.1145/1024393
                • cover image ACM SIGOPS Operating Systems Review
                  ACM SIGOPS Operating Systems Review  Volume 38, Issue 5
                  ASPLOS '04
                  December 2004
                  283 pages
                  ISSN:0163-5980
                  DOI:10.1145/1037949
                  Issue’s Table of Contents
                • cover image ACM SIGPLAN Notices
                  ACM SIGPLAN Notices  Volume 39, Issue 11
                  ASPLOS '04
                  November 2004
                  283 pages
                  ISSN:0362-1340
                  EISSN:1558-1160
                  DOI:10.1145/1037187
                  Issue’s Table of Contents
                • cover image ACM SIGARCH Computer Architecture News
                  ACM SIGARCH Computer Architecture News  Volume 32, Issue 5
                  ASPLOS 2004
                  December 2004
                  283 pages
                  ISSN:0163-5964
                  DOI:10.1145/1037947
                  Issue’s Table of Contents

                Copyright © 2004 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 7 October 2004

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • Article

                Acceptance Rates

                Overall Acceptance Rate535of2,713submissions,20%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader