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University of Washington
Abstract
System Support for Pervasive Applications
by Robert Gnmm

Chair of Supervisory Commuttee:

Protessor Brian Bershad
Computer Science and Engineenng

Pervasive computing provides an attractive viston tor the future of computing. Computational power
will be avarlable everywhere. Mobile and stationary devices will dynamically connect and coordi-
nate to scamlessly help people in accomphishing their tasks. For this vision to become a reality. de-
velopers must build applications that constantly adapt to a lhighly dynamic computing environment.
However, existing distributed systems technologies are tll-suited for building adaptable applications.
To make the developers” task feasible. we introduce a system architecture for pervasive computing.
called one.world. Our architecture provides an integrated and comprehensive framework for build-
ing pervasive apphcations. It includes services. such as service discovery and migration. that help
to build applications and directly simphfy the task of coping with constant change. We describe the
design and implementation of our architecture and retlect on our own and others” experiences with

using it.
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Chapter 1

INTRODUCTION

Pervasive. or ubiquitous. computng [113] has the potential to radically transform the way people
interact with computers. The key tdea behind pervasive computing 15 to deploy a wide vanety of
computing devices throughout our living and working spaces. These devices coordinate with each
other and network services [27]. with the goal of providing people with universal access to their in-
formation and seamlessly assisting them in completing thetr tasks. Pervasive computing thus marks
a major shift in focus, away from the actual computing technology and towards people and therr
needs. So. instead of manually managing their computing environment by. for example. copying
files between devices or converting between data formats. users “simply™ access their applications
and therr duta whenever and wherever they need.

With 1ts viston of ubiquitous information access. pervasive computing significantly impacts
computing devices and their deployment. In addition to conventional desktop and server computers.
pervasive computing environments encompass many different devices of various sizes and capabil-
ities, including PDA cell phones. video game consoles. and robotic dogs 1see Figure 1.1). We can
reasonably expect the vanety of devices to further increase over ume. Furthermore. in addition to
well-administered and -controlled computing laboratories and server rooms with racks of comput-
ers, computing devices are now everywhere, often embedded in places not typically associated with
computing. such as living rooms or biology laboratories.

Pervasive computing also changes how people interact with the surrounding computing infras-
tructure. First, in contrast to conventional computing environments. people focus on thetr activities
and not on the computers. Furthermore. as already pointed out. these computers are often embedded
within the landscape. For example, in a biology laboratory. researchers focus on their experiments

and not on the computing devices used to capture experimental results. such as digital pipettes or
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Figure 1.1: A sampling of unconventional computing devices. Pervasive computing environments
encompass a wide variety of computing devices. such as tclockwise from the upper left corner) MP3
players. PDA cell phones. tablet computers. computenzed wrist watches. robotic dogs. and video
game consoles. All pictured devices are either commercial prototypes or already shipping: we can
reasonably expect the variety of devices to further increase over ime.

incubators. Second. tasks often last days and may span many devices. people, and places. More-
over. task requirements may change frequently. For example. biology experiments often take hours.
if not days, to complete and involve many collaborating researchers working at different laboratory
stations. As an experiment progresses, researchers may schedule additional steps. for instance. to
determine whether an unexpected outcome was caused by contaminants.

The key challenge for developers is to build pervasive applications that continuously adapt to
such a highly dynamic environment and continue to function even if people move through the phys-
ical world or switch devices. and if the surrounding network infrastructure provides only limited
services. However, existing approaches to building distributed applications. including client/server
or multitier computing. are tll-suited to meet this challenge.

The fundamental problem is that these approaches try to hide distnibution and rely on technolo-
gies. such as remote procedure call (RPC) packages [11] or distributed file systems [66]. that extend

single-node programming methodologies to distributed systems. Because these technologies hide
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remote interactions. favor static composition through programmatic interfaces. and often encapsu-
late data and functionality in the form of objects. they make it hard to anticipate failures. to extend
applications. and to share and search data. Consistent with the push towards hiding distribution.
applications built on top of these technologies tend to be structured like single-node applications
and assume an execution environment where resources are constant and continuously available.

As a result. users are forced to “sttch up the seams™ and need to explicitly recontigure their
computers every time the execution environment changes. For example. with today’s wireless net-
working technologies. people need to manually adapt their computers every time they enter a dif-
ferent network. Existing systems and applications have no notion of “entering a new network™ and
thus need to be explicitly configured with the wireless network name and access key. o say nothing
of necessary tile servers or close-by printers. However. forcing users to adapt 1s impractical and.

fundamentally, antithetical to the vision of pervasive computing.

1.1 This Dissertation

This dissertation explores how to build apphications for pervasive computing environments. [t ntro-
duces a system architecture. called one.world. that provides an integrated framework that has been
specitically designed for building adaptable applications. with the goal that apphcatons adapt to
chunge instead of users.

The hypothests behind this work 1s that, by focustng on the unique requirements of pervasive
computing. effective system support for pervasive applications becomes possible. The idea 15 to
design and implement a system architecture that focuses on meeting the requirements ill-served by
contemporary systems. By focusing on these requirements, our system architecture—in contrast
to many previous systems—Ilets applications instead of users adapt to change. yet—like previous
systems—does not place an undue burden on developers. To test this hypothesis. we validate the
architecture with application builders and gain actual experience with real pervasive applications.
Based on that experience. we iterate the design process and address the additional. empirically
determined needs of pervasive applications and their developers. In other words. we rely on a design
methodology that starts out by focusing on the unique requirements and then iteratively refines

the design based on empirical evidence. resulung in a practical system architecture for pervasive



computing.

Our work 1s motivated by the nsight that. in direct opposition to conventional distributed sys-
tems. system support for pervasive applications must expose distribution rather than hide 1. That
way. applications can see change and then adapt to it instead of forcing users to constantly recontig-
ure their systems. More specifically. system support for pervasive applications must meet three re-

quirements. First. as people move throughout the physical world—either carrying their own portable

devices or switching between devices—an application’s locaton and execution context change all
the trme. As a result. system support needs to embrace contextual change and not hide it from appli-
cations. Second. users expect that their devices and applications just plug together. System support
thus needs to encourage ad hoc composition and not assume a static computing environment with
a limited number of interactions. Third. as users collaborate, they need to easily share informaton.
As a result, system support needs to recognize sharing as the defaul:.

Individually. the three requirements have been recognized by previous distributed systems ef-
forts. For instance. Bayou [88. 102] exposes difterent data values in the data stores on difterent
devices. and Odyssey [81] relies on asynchronous notitications to expose contextual change to ap-
plications. Furthermore. the World Wide Web 1s built on only two basic operations. GET and POST.
which simplities dynamic composition and. 1n part. has enabled the addiion of new services. such
as caching [22. 103]. content transformatton [36}. and content distnibution [53]. Finally. the recent
move towards expressing all data on the Internet as XML [15] attempts to facilitate pervasive shar-
ing. Clearly, our approach to building pervasive apphications draws on these efforts: but it differs in
that we do not focus on any single requirement and address all three requirements «af the same time.
Furthermore. by exposing distribution. our approach differs from a large class of ettorts that have
explored how to build services that (largely) transparently adapt to a changing execution context.
We view these efforts as complimentary to our own work and discuss them in the following chapter.

Our architecture, one.world, has been designed from the ground up to meet the three require-
ments at the same time. It is based on a simple programming model that relies on tuples (possibly
nested records of name/value pairs) for all data. thus making it easy to share data, and asynchronous
events for all communications, thus making it easy to notify applications of change. Like any
distributed system. it has facilities for managing processes, storage, and point-to-point communica-

tions. More importantly. it provides a set of services. such as service discovery and migration, that



directly simplity the task of coping with constant change. Our architecture reuses existing operating
system technologies where appropriate and innovates where necessary: the focus 1s to provide an
integrated and comprehensive framework for building pervasive applications.

We have validated our architecture by supporting the Labscape project [6] tn porting their digital
biology laboratory assistant to one.world. by using our architecture as the basis for student projects
1n a sentor-level capstone design course. and by butlding our own utilities and applications on top
of one.world—notably. Emcee. our user and application manager. and Chat. a text and audio mes-
saging svstem. Based on these expertences. we show that our architecture ¢ 1) enables others to
successfully burld pervasive applications, (2) is not sigmiticantly harder to program than with con-
ventional programming styles. (3)1s sufficiently complete to support additional services and utilities
on top of it, and (4) has acceptable performance. with applications reacting quickly to changes in
thetr runume context. Our evaluation thus contirms the hypothesis behind this work and establishes

one.world as a solid foundation tor future work on system support for pervasive computing.

1.1.1 Research Contributions

This dissertation makes the following research contributions:

e We present a system architecture for pervasive computing. called one.world. Rather than pro-
viding middleware on top of an existing distributed system. our architecture has been designed
from the ground up to directly address the unique requirements of pervasive computing—
change. ad hoc composition, and pervasive shanng. As a result. we can avoid unnecessary
complexity and provide an integrated and comprehensive framework for building pervastve

applications.

e We introduce a new service for grouping applications and their data as well as for composing
applications. This so-culled environment service provides a nestable container for persistent
storage and computations alike, thus representing a combination of file system directories and

nested processes [17, 33, 107] in other operating systems.

o We present a practical migration service to simplify the construction of applications that fol-

low people as they move through the physical world. By integrating our mugration service



with our architecture's environment service. we can strnke a better balance between the com-
plexity of transparent process migration. as provided. for example. by Sprite (28]. and the

limited unlity of mobile agent systems. such as IBM's Aglets [63].

e We present a classification of service discovery options and describe a discovery service that
supports all options through an API with only three simple operations. The same APl is also
used for point-to-point communications. The result is an elegant and powerful interface that
ts considerably more flexible than. for example. RPC. yet also easy to use—even though our

architecture does not hide remote interactions.

e We idenufy a software puttern for managing asynchronous interactions. The so-called logic/
operation pattern structures apphications 1nto logic—computations that do not fail—and
operations—interactions that may fail. The corresponding operation hbrary simphities such
interactions by keeping the state associated with event exchanges and by providing automatic

tmeouts and retries.

In addition to these major research contributions, this dissertation also reflects a (subtle) cultural
shuift. In evaluating distributed systems. previous work has often focused on system performance as
the primary evaluation metric. While we still consider performance an important evaluation metric.
we believe that it cannot be the only one. Notably. when introductng a new system architecture. an
important question is whether developers can eftectively build applications on top of that architec-
ture. As a result. we also draw on other metrics. such as programmer productivity. to evaluate our

architecture. thus expanding the repertoire of metrics for systems work.

1.1.2  Limitations

Consistent with the hypothesis. the design of one.world focuses on meeting the unique requirements
of pervasive computing. As a result. it does not address all possible needs of pervasive applications.
Notably, we have not addressed how to secure pervasive applications, including how to express
access control constraints and how to enforce them in a constantly changing computing environment.
Clearly, security is a very important concern, though it is not a new concern. At the same time. the

design does reflect an understanding that appropriate security mechanisms will have to be built into



the system in the future. We have thus included a simple. yet effecuve interposition mechanism (the
request/monitor mechanism described in Chapter 4.3.1). which. as [ showed n [43]. can provide a
solid basis for implementing access control and auditing.

Furthermore. while building one.worid tfrom the ground up (without employing existing mid-
dleware) has allowed us to avoid many of the hmitations of existing distnbuted systems. 1t has also
introduced new ones. Notably. as discussed 1n Chapter 7. using our own data model—based on
tuples—and our own communication model—based on the exchange of events—has resulted in an
architecture that has only very limited interoperability with existing Internet services. Furthermore.
as discussed in Chapter 6.3, the scalability of our implementation. especially that of service discov-
erv. is limited. making it suitable only for pervasive computing environments with several dozens of

people and devices. We suggest approaches to avoiding these mutations in the respective chapters.

1.1.3  Dissertation Organization

This dissertation 1s structured as follows. In Chapter 2. we mouvate our work and ntroduce our
approach to building pervasive apphcations. Chapter 3 provides an overview of our architecture.
We descnbe its programmuing model in Chapter 4 and our Java-based implementation 1n Chapter 5.
In Chapter 6. we introduce the user-space services. utihties. and apphcations we and others have
built and present the evaluation of our architecture, which 1s based on these programs. [n Chapter 7.
we reflect on our experiences with building and using one.world and suggest important areas for
future work on system support for pervasive computing. Chapter 8 reviews related work. Finally.

Chapter 9 concludes this dissertation.



Chapter 2

MOTIVATION AND APPROACH

From a systems viewpoint. the pervasive computing space presents the unique challenge of a large
and highly dynamic distributed computing environment. This suggests that pervasive applications
really are distributed applications. Yet, existng approaches to building distributed systems fall short
along three main axes when considering pervasive apphcations. First, existing approaciies make
it hard to anticipate change. including failures. as they tend to hide remote interactions. Second.
they make 1t hard to extend applications, as they favor static composition through programmatic
intertaces. Third. they make 1t hard to share and search data, as they often encapsulate data and
funcuionality in the form of objects. The common cause for all three shortcomings 1s an attempt
to simplify application development by extending single-node programmung methodologies to dis-
tnibuted systems. However. this drive also results in systems that are unsuitable for building adapt-
able applications, thus placing the burden of adapting to change on users. We now discuss the three
shortcomings of existing approaches to butlding distributed systems in detaul.

First. many existing distributed svstems seek to hide distribution and. by building on distributed
tile systems [66] or remote procedure call (RPC) packages [11]. mask remote resources as local
resources. This transparency simplifies application development. since accessing a remote resource
is just like performing a local operation. However. this transparency also comes at a cost in ser-
vice quality and failure resilience. By presenting the same interface to local and remote resources.
transparency encourages a programming style that ignores the difterences between local and remote
access. such as network bandwidth [80]. and treats the unavailability of a resource or a fatlure as an
extreme case. But in an environment where tens of thousands of devices and services come and go,
change is inherent and the unavailability of some resource is a frequent occurrence.

Second, RPC packages and distributed object systems. such as Legion [67] or Globe [109]. com-
pose distributed applications through programmatic interfaces. Just like transparent access to remote

resources, composition at the interface level simplifies application development. However, compo-



sition through programmatic intertaces also leads to a tight coupling between major application
components because they directly reference and invoke each other. As a result. it s unnecessarily
hard to add new behaviors to an application. Extending a component requires interposing on the in-
terfaces 1t uses. which requires extensive operating system support [54. 87. 101 ] and 15 unwieldy tor
large or complex interfaces. Furthermore. extensions are limited by the degree to w hich extensibility
has been designed 1nto the application’s interfaces.

Third. distributed object systems encapsulate both data and functionahty within a single ab-
straction. namely objects. Yet again. encapsulation of data and functionality extends a conventent
programming paracigm for single-node applications to distnibuted systems. However, by encap-
sulating data behind an object’s interface, objects limit how data can be used and comphcate the
sharing. searching. and tiltening of data. In contrast. relavonal databases detine a common data
model that 1s separate from behaviors and thus make 1t casy to use the sume data for different and
new applications. Furthermore. objects as an encapsulation mechanism are based on the assump-
tion that data layout changes more trequently than an object’s interfuce. an assumption that may be
less valid for a global distributed computing environment. Increasingly. many ditterent applications
manipulate the same data formats, such as XML [15]. These data formats are specitied by industry
groups and stundard bodies. such as the World Wide Web Consortium. and evolve atarelatiy ely slow
pace. In contrast. application vendors compete on tunctionahity. leading to considerable differences
tn application interfaces and implementations and a much faster pace of innovation.

Not all distributed systems are based on extenstons of single-node programmung methodologies.
Notably. the World Wide Web does not rely on programmatic intertaces and does not encapsulate
data and functionahity. It is built on only two basic operations. GET and POST. and the exchange
of passive. semi-structured data. In part due to the simplicity of its operations and data moedel.
the World Wide Web has successtully scaled across the globe. Furthermore. the narrowness of its
operations and the uniformity of its data model have made it practical to support the World Wide
Web across a huge variety of devices and to add new services. such as caching [22. 103]. content
transformation [36]. and content distrnibution [53].

However. from a pervasive computing perspective the World Wide Web also suffers from three
significant limitations. First. just like conventional distributed systems. it places the burden of adapt-

ing to change on users. for example, by making them reload a page when a server is unavailable be-
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cause. for example. it is overloaded or inaccessible. Second. it requires connected operation for any
use other than reading static pages. Finally. 1t does not seem to accommodate emerging technologies
that are clearly useful for building adaptable applications. such as service discovery [2. 5. 25] and
mobile code [106]. While Java applets are a form of mobile code. they are only active while the
corresponding page is displayed and. by default. can only communicate with the onginating server.
As a result. they are basically limited to enlivening web pages and implementing site-specitic chat

clients.

2.1 The Unique Requirements of Pervasive Computing

The inadequacy of existing distnibuted systems raises the question of how to structure system support
for pervasive applications. On one side. extending single-node programmung models to distributed
systems leads to the shortcomings discussed above. On the other side. the World Wide Web avoids
several of the shortcomings but 1s too limited for pervasive computing.  To help define a better

alternative. we 1denufy the three unique requirements of pervasive computing.

Requirement 1 Embrace contextual change.

As people move through the physical world. the execution context of their applications changes
all the ume. It s impractical to ask users to manually manage these changes. such as entering a
new wireless network name and access Key every ume they enter a different network. Systems
thus need to expose contextual changes. rather than hiding distribution. so that applications can
implement their own strategies for handling changes and spare the users from doing so. Event-
based notification or callbacks are examples of suitable mechanisms. At the same time, systems
need to provide primitives that stmplify the task of adequately reacting to change. Examples for
such primitives include “checkpoint™ and “restore™ to simplify failure recovery. "move to a remote
node™ to follow a user as she moves through the physical world. and “find matching resource™ to
discover suitable resources on the network. such as nearby instruments in a biology laboratory or

other users with whom to exchange messages.

Requirement 2 Encourage ad hoc composition.
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As people use different devices in different locations. they expect that applications and devices just
plug together. It 1s impractical to ask users to manually perform the composition. Systems thus
should make 1t easy to compose applications. services. and devices at runume. In particular, n-
stalling a user’s applications on a device must be easy. Furthermore. interposing on an application’s
interactions with other applications and network services must be simple. I[nterposiion makes it
possible to dynamucally change the behavtor of an application or add new behaviors without chang-
ing the application wself. This 1s particularly useful for complex and reusable behaviors. such as

replicating an apphication’s data or deciding when to migrate an apphcation.
Requirement 3 Recognize sharing as the default.

In essence. pervasive computing strives to make information accessible anywhere and anytime. Itis
impractical to ask users to manage the corresponding tiles (by. for example. moving them between
ditterent devices) and to convert between ditterent data formats. Systems thus need to make 1t easy
to access saved information and to share information between difterent applications and devices.
Ease of sharing 1s especially important for services that search and filter large amounts of data.
At the same tme. data and functionality depend on each other. tor example. when mugrating an
application and its data. Systems thus need to include the ability to group data and functionality but

must make them accessible independently.

Individually. the three requirements have been recognized by previous distributed systems et-
forts. For instance. Bayou (88. 102] exposes different data values in the data stores on different
devices. and Odyssey (81] relies on asynchronous notifications to expose contextual change to ap-
plications. Furthermore, as already discussed. the World Wide Web 1s built on only two basic
operations. GET and POST, which simplities dynamic composition. and the recent move towards
expressing all data on the Internet as XML attempts to facilitate sharing. Our approach difters from
these efforts in that we advocate addressing all three requirements at the same time.

Common to the requirements is the realization. similar to that behind extensible operating sys-
tems [9. 29. 57]. that systems cannot automatically decide how to react to change, because there are
too many alternatives. Where needed. the applications themselves should be able to determine and

implement their own policies [94]. As a result, we are advocating a structure different from previous
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Figure 2.1: Dlustration of our approach. The three requirements guide the design of our system
architecture and make 1t feasible for application developers to program for change. resulting n
adaptable applications.

distributed systems. which exposes distribution so that applications can adapt to change instead of
users.

At the saume ume, the three requirements do not preclude the use ot established programming
methodologies. Embracing contextual change does not prevent us from providing reasonable de-
fault behaviors. But it does emphasize that apphications must be notified of change. Similarly,
encouraging ad hoe composition does not preciude the use of strongly typed APIs. However. it does
emphasize the need for simplifying interpositon. Finally. recognizing sharing as the default does
not preclude the use of object-oriented programming. The ability to abstract data or functionahty
ts clearly useful for structunng and implementing applications. At the same ume, ease of shanng.
with its emphasts on the ability to search. filter. and translate data, does suggest that applicatton data
and functionality build on distinct abstractions.

More importantly. a system architecture whose design meets the three requirements provides
considerable support for coping with change. Embracing contextual change helps with idenutying
and reacting to changes in devices and the network. Encouraging ad hoc composition helps with
changes in application features und behaviors. Finally. recognizing sharing as the default helps with
changes in data formats and the corresponding application functionality. Given a system that meets
these requirements. application developers can focus on making applications adaptable. and the
users. in turn, can focus on their tasks instead of manually adapting their devices and applications.

While programming adaptable applications requires developer discipline when compared to conven-



tional distributed systems. it also provides an extraordinary opportunity to transform the way people
interact with their computers and applications. This approach to building pervasive applications is
illustrated in Figure 2.1.

2.2 Adaptability and Transparency

By exposing distribution. our approach differs from a large class of efforts that have explored how
to build services that adapt (largely) transparently to an ever changing execution context. Since
an exhaustive survey of such efforts 1s bevond the scope of this dissertation. we highhight a few.
representative storage and networking services and discuss their relationship to our approach.

In the area of adaptable storage services. the Coda file system [58. 78] aggressively caches files
on clients—hoarding files even before they might be accessed—to support disconnected and weakly
connected operation. Simularly. the Rover system [55] caches service objects on clients and provides
queued RPC to support mobile devices that may only be intermuttently connected. The University
of California at Berkeley's xFS file system [4] automaucally distributes file storage. caching, and
control across a set of cooperating workstations and thus eliminates the need for dedicated file
servers. Finally. the OceanStore project [59] 1s trying to create a global object store that runs on an
untrusted computing infrastructure and automatcally moves and rephcates data between devices to
optimize for locality and avaslability.

In the area of adaptable networking services. the Mobile IP architecture [51] supports device
mobility by automatically forwarding TCP/IP traftic. even 1if a device 1s not connected 1o 1ts home
network. Furthermore. the Barwan networking architecture [16] includes support for transparently
switching between wired and wireless networks and for correspondingly adjusting the data transport
protocols to ensure that devices remain continuously and reliably connected. independent of their
current location.

Common to these efforts is that they provide particular services. rather than representing pro-
gramming methodologies like the RPC and distributed object systems discussed above. As a result.
they can focus on making the provided services adaptable. More fundamentally. to be as trans-
parent as possible. these efforts also share a drive to contain changes to existing applications and

networking infrastructure as much as possible. One important technique used by many of these
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efforts 1s the use of proxies. For example. xFS includes NFS proxies that provide access to its file
system data to unmoditied Unix-based client machines. Furthermore. Rover includes a web browser
proxy to provide web access to mobile devices while also leaving existing browsers and servers un-
changed. Finally. both Mobile [P and Barwan use proxies to tsolate protocol additions to the mobile
clients and their routers. with Barwan also generalizing proxies under their TACC (for transtorma-
tron. aggregation. caching. and customization) model {36]. As a result. these services can adapt to a
changing execution context. while also being able to transparently iteract with legacy systems and
applications.

Overall. we believe that these efforts are complimentary to our own approach along two axes.
First. by providing continuous access to important services. such as storage and networking. these
efforts certainly lessen the burden of making applications adaptable and thus simphity the devel-
opment of pervasive applications. In fact. one.world aiso reflects the desire to 1solate applications
from at least some changes: As discussed in Chapter 5.3, the tmplementation of our architecture’s
discovery service relies on an automatically elected discovery server and thus transparently adapts
to a changing device and network topology. Discovery server elections ensure that the directory of
discoverable resources 1s almost always available while also hiding the directory’s location. This
implementation trade-off 1s reasonable. as directory avatlability 15 considerably more tmportant to
pervasive applications than directory location.

Second. since a system architecture that meets the three requirements has been specitically de-
signed for implementing adaptable programs. we believe that such an architecture can also simplity
the implementation of transparently adapting services—an important concern when considening the
complexity of services such as xFS or OceanStore. Furthermore. several of the above systems are
only transparent to a degree and need to expose some changes to applications. For example, the
resolution of tile conflicts in Coda is at least type-specitic 1f not application-specific [60]. Fur-
thermore, Barwan needs to notify applications that the currently used networking technology has
changed so that they can adapt. for example. the fidehity of streaming audio or video to better match
available bandwidth. Clearly. a system architecture that follows our approach provides a convenient

framework for exposing these changes.
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Figure 2.2: A workbench in a biology laboratory. Notice how the touchscreen on the right hand side
becomes just another instrument on this workbench, rather than being the focus of attention.

2.3 The Biology Laboratory as an Example Application Domain

To illustrate the three requirements central to our approach to building pervasive applications. we
now introduce the digital biology laboratory. Unlike the scenarios presented in {31} and [113].
the digital laboratory does not illustrate the full potential of pervasive computing. However. it
addresses a real need of real people—performing reproductble biology experiments. Furthermore.
as discussed in Chapter 6.4.2. the digital laboratory has been implemented on top of one.worid
by the University of Washington's Labscape project and has been deployed at the Cell Systems
Initiative [6]. As a result, it provides an apt example for a pervasive application and the three
requirements.

As already mentioned. the goal of researchers working in a biology laboratory 1s to pertorm
reproducible experiments. Today. they manually log individual steps in their paper notebooks. This
easily leads to incomplete experimental records and makes it unnecessarly hard to share data with
other researchers, as the biologists need to explicitly enter the data into their PCs. In contrast. a

digital laboratory employs digitized instruments, such as pipettes and incubators, to automatically



Figure 2.3: A screenshot of Labscape’s user interface. Each experiment 1s represented as an ex-
perimental flowgraph. or guide. The individual icons represent different experimental steps and the
arrows represent ordering constraints. Oniginally. the guide functions as a plan for the expenment
to be performed. As the researcher performs a step. she annotates the corresponding icon with the
results of that step. Over time. the guide thus becomes a record of the experiment. Note that this user
interface was developed by the Labscape project through user interface studies with actual biology
researchers.

capture data, location sensors to track researchers” movements. and touchscreens to display expen-
mental data close to the researchers (see Figure 2.2 for a workbench in the digual laboratory). As a
result, biologists 1n the digital laboratory have more complete records of their experiments and can
more easily share results with their colleagues.

A fundumental feature of the digital laboratory is that experimental data follows a researcher as
she moves through the laboratory. Furthermore, the data can follow her as she leaves the laboratory.
for example. so that she can review a day’s results on her tablet computer while taking the commuter
train home. At the same time. there is no need to move the entire digital laboratory application as the
researcher moves through the physical world. Rather. only a small component to capture and display
experimental data needs to follow the researcher. Eventually. all data is forwarded to a centralized

repository. making it possible. for example, to mine the data of several experiments.



Figure 2.3 shows a snapshot of the capture and display component’s user intertace. which 1s
also called a guide and has been developed by the Labscape project through user interface studies
with actual biology researchers. Each experiment 1s represented as a flowgraph. The individual
ions represent different experimental steps and the arrows represent ordering constraints between
the steps. Originally. the guide functions as a plan for the expeniment to be performed. A researcher
can ether select a flowgraph from a library of exisung flowgraphs or create her own (which may be
based on an existing flowgraph). As the researcher performs a step. she annotates the corresponding
icon with the results of that step. or. if she 15 using digital instruments. they are automatically
annotated. Over time. the guide becomes a record of the experiment.

The three unique requirements of pervasive computing—change. ad hoc composition, and per-

vasive sharing—show up in the digital laboratory as follows:

Embrace contextual change. Brology laboratories are orgamzed into task-specitic workareas. of-
ten centered around a specific instrument. such as a centnfuge or incubator. and biologists
often move between workareas while working on the same expeniment. As a result, a re-
searcher’s location changes needs to be exposed to her guide. so that 1t can automatically

follow her to the corresponding touchscreens.

Encourage ad hoc composition. As the researcher moves through the biology laboratory. her guide
needs to transparently connect to the digital instruments in her current workarea and incorpo-
rate readings into the experimental flow graph. Furthermore. as outside researchers visit the
laboratory. their PDAs or laptops need to be automatically integrated into the digital labora-

tory application so that the researchers can exchange and review experimental results.

Recognize sharing as the default. Biology experiments often last hours. 1f not days. and biologists
multitask between several experiments at the same time or focus on performing a single step
for many experiments in a row. As a result. it must be easy to switch between different exper-

iments. to hand off experiments between researchers, and to compare different experiments.

As a pervasive application, the digital laboratory application needs to be considerably more
seamnless and adaptable than conventional distributed applications. At the same time. it also illus-

trates an important property of pervasive computing environments: their human scale. In particular.
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the digital laboratory only needs to scale to a limited number of concurrent users. as only so many
people can work 1n the same laboratory at the same time. Furthermore. the digital laboratory appli-
cation typically needs to adapt at a human tume scale. A researcher walking from one workarea to
another thus leaves a relatively large timespan (compared to the microsecond latencies often con-
sidered in distributed systems work) for migrating the researcher’s guide and connecting to close-by

instruments.

2.3.1 Short-comings of the Status Quo

To emphasize that pervasive applications are not just conventional distnbuted applications. we now
constder the himitations of conventional systems 1n implementing the digital laboratory. First. 1t
15 hard to move between devices. Even with existing networked apphication support. such as X
Windows [82] or roaming profiles in Windows [108]. users have to manually log into a machine.
start their applications. and load the necessary data. Second. 1t has hard to connect to ditferent
instruments as researchers move between workareas. Conventional systems focus on providing
point-to-point communications (with TCP being the most prominent example) and lack facilines
for dynamically discovering and connecting to close-by instruments without explicit. manual con-
figuration. Finally. 1t ts hard to share data. On one hand. file systems support only coarse-grained
sharing—remember that biology experiments consist of many steps that typwally add only a small
amount of data to an experiment’s record. On the other hand. databases are difficult to set up and
administer, typically requining dedicated facilities and staff.

Based on similar observations. several efforts have explored how to layer additional middleware
for building adaptable applications onto existing distnbuted systems. Sun’s Jini is probably the
most popular example for such a middleware platform {5]. Like one.world. it supports distributed
events, tuple storage. and service discovery. However. unlike one.world. it is layered on top of Java
RMI [100]. a traditional distributed object system. and thus inherits RMI's limitations. In particular.
Jini requires a statically configured infrastructure to run its discovery server. Furthermore. it requires
an overall well-behaved computing environment because it relies on transparent and synchronous
remote invocations, does not provide isolation between applications running within the same Java

virtual machine. and links objects on ditferent devices with each other through distributed garbage
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collection. In other words. Jini 1s inherently limited because it builds on a conventional distnbuted
system. To be effective. system support for pervasive applications must be designed from the ground
up to meet the three requirements of change. ad hoc composition. and pervasive sharing. We discuss

the differences between one.world and Jini and the latter’s limitations in more detail in Chapter 8.



Chapter 3

ARCHITECTURE

With the three requirements in place. we now introduce one.world and its services. Our architecture
1s structured according to the following tour pnnciples. First. bias a set of foundation services to
directly address the three requirements of change. ad hoc composition. and pervasive shaning. Sec-
ond. express specific system services in terms of the foundation services and make them available
as common application building blocks. Third. employ a classic user/kernel spht. with foundation
and system services provided by the kernel. and libranies. system utihties. and applications running
in user space. Finally. remain neutral on other issues. such as whether to implement applications as
chent/server or peer-to-peer apphications. The resulting orgamzation is tlustrated 1n Figure 3.1. We

now present the individual services as well as the provided librury support in more detal.

3.1 Foundation Services

The four toundation services directly address the three requirements of change. ad hoc composition.
and pervasive sharing. First, a virtual machine. such as the Java virtual machine {70] or Microsott's
common language runtime [104]. provides a common execution environment across all devices and
hardware platforms.! Since developers cannot possibly predict all the devices their applications will
run on, the virtual machine ensures that applications and devices are composable. Second. muples
define a common data model. including a type system. for all applications and thus make it easy
to share data. They are records with named fields and are self-describing in that an application can
dynamically determine a tuple’s fields and their types. Third. all communications in one.world.
whether local or remote. are through asvachronous events; applications are composed trom com-
ponents that exchange events through imported and exported event handlers. Events make change

explicit to applications. with the goal that applications adapt to change instead of forcing users to

'one.world is implemented n Java. Though, its implementation does not rely on any features that are umigue to Java,
and 1t could be implemented on a ditterent virtual machine platform. such as Microsoft’s common language runtime.
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Figure 3.1: Overview of one.worfd’s architecture. Foundation and system services are part of the
kernel, while libranes. system utihities, and applications run in user space.

manually recontigure their devices and applications.

Finally. environments are the central mechanism tor structuring and composing apphications.
They serve as containers for stored tuples, application components. and other environments and
form a hierarchy with a single root per device. Each application consists of at least one environment.
tn which 1t runs and stores its persistent data. However. applications are not limited to a single
environment and may span several, nested environments. Comparable to processes 1n conventional
operating systems. environments provide protection and 1solate applications trom each other and
from one.world’s kemel. which is hosted by each device’s root environment. Environments also are
an important mechanism for dynamic composition: an environment controls all nested environments
and can interpose on therr nteractions with the kernel and the outside world. Environments thus
represent a combination of the roles served by file system directories and nested processes [17. 33.
107] in other operating systems. Figure 3.2 shows an example environment hierarchy.

To reiterate, the design rationale for the foundation services is as following. First, a virtual

machine supports ad hoc composition between applications and devices. Second. tuples define a
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Figure 3.2: IHlustration of an example environment hierarchy. The User environment hosts the
Emcee application and has one child. named roberr. which stores several tuples representing that
user’s preferences. The robert environment in turn has two children. named Clock and Char. The
Clock environment only contains active application components. while the Char environment. 1n
addition to hosting the Chat application. also stores tuples representing the music being broadcast

by Chat.

Table 3.1: Application needs and corresponding system services.

~ Applications need to... ' one.world provides...

 Search : Query engine ,
© Store data v Structured VO :
- Communicate ' Remote events ]
. Locate | Discovery '

Fault-protect ! Checkpointing )
. Move | Migration |

common type system for all apphcations and thus simplify the sharing of data. Third. events make
change explicit to applications, so that they adapt to change instead of users. Finally. environments
host application components. store persistent data, and—through nesting—facihtate the compost-

tion of applications and services.

3.2 System Services

In addition to the foundation services, one.world provides a set of system services that serve as

common application building blocks. Table 3.1 summarizes common application needs and the
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corresponding system services.

The query engine provides the ability to search tuples by instantiating filters. Queries support
comparison of a constant to the value of a tield. comparison to the type of a tuple or ftield. and
negation. disjunction, and conjunction. Structured I/0 lets applications access stored tuples 1n en-
vironments. It supports the wrniting. reading. querying. and deleung of tuples. The structured VO
operations are atomic so that their eftects are predictable. which is especially important when several
applications concurrently access tuples in the same environment. and can optionally use transactions
to group several operations into one atomic umt. The query engine and structured IO simphify data
access because applications can directly access relevant data items.

Remote event pussing (REP) forwards events to remote services and s one.world’s basic mecha-
nism for communicating across the network. Consistent with our push towards exposing distribution
and in contrast to RPC or distributed object systems, remote communications in one.world are ex-
plhicit. To use REP. services export event handlers under symbolic descniptors. that is. tuples. and
clients send events by specifying the symbolic recewver. Discovery locates services with unknown
locations. It supports a nich set of opuions, including early and late binding [2] as well s anycast
and mulucast. and s fully integrated with REP. resulung in a simple. yet powertul APL Discovery
1s especrally useful for applications that migrate or run on mobile devices and need to tind local
resources, such as a close-by digital instrument.

Checkpointing captures the execution state of an environment tree and saves 1t as a tuple. making
it possible to later revert the environment tree's execution state. Checkpointing simplifics the task
of gracetully resuming an application after 1t has been dormant or after a failure. such as a device's
batteries runming out. Migration provides the ability to move or copy an environment and its con-
tents. including stored tuples. application components. and nested environments, either locally or to
another device. It is especially useful for applications that follow a person from shared device to

shared device as she moves through the physical world.

3.3 Library Support

Outside of one.world's kernel. our architecture provides additional. user-level library support for

implementing pervasive applications. The libraries include functionality for constructing an appli-
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Frgure 3.3: The big picture. All the different devices 1 a pervasive computing environment run the
same system platform. one.worfd. The different applications exchange tuples and events between
each other and migrate tfrom one device to another.

catton’s user interface and for the tmed execution of event handlers. More importantly, operations
help munage asynchronous tnteractions. They are based on what we call the logic/operation pattern.
This pattern structures applications 1nto logic—computations that do not fail, such as creatung and
filling 1n a message—and operations—interactions that may fail, such as sending the message to
its intended recipients. Operations simplify such interactions by keeping the state associated with

event exchanges and by providing automatic timeouts and retries.

3.4 The Big Picture

Pulling back. Figure 3.3 illustrates the big picture behind our architecture. The basic idea 1s that all
the different devices in a pervasive computing environment run the same system platform. namely

one.world. While individual devices may provide additional services over to those supplied by



our architecture, applications can rely on the same basic operating environment on every device
tmodulo differences in CPU speed and memory/storage capacity). Each device 15 independent ot
other devices and need not be connected with (all) other devices. Furthermore. each device may be
administered separately.

The ditferent applications runming on the different devices interact with each other by exchang-
ing tuples and events. When communicating with other applications, an application may not nec-
essarily know how many applications it 1s communicating with and where those applications are
focated thence the heap of data in the tigure). Furthermore, as people move through the physical
world, applications follow by migrating from device to device to device.

For example. 1n case of the digital biology laboratory. the digital instruments send events de-
scribing performed operations to a researcher’s guide. and the guide. in turn. forwards expernimental
results to the centralized data repository. As the researcher is switching between work areas. her
guide follows her by migrating from touchscreen to touchscreen to touchscreen. Similarly. when
using Emcee and Chat. a user’s Chat application sends text and audro messages by sending events
to other people’s instances of Chat. As the user moves between rooms, Emeee migrates her Chat

apphication so that Chat 1s always running on a device close to that person.

3.5 one.world and Distributed Systems Concerns

Like any distnibuted system. one.world must address several distributed systems issues. such as how
to provide processes. storage. and communications. Table 3.2 lists the most important 1ssues and
relates them to the corresponding features in our architecture. When compared to Figure 3.1 on
page 21. 1t represents an alternative organization ot our architecture. The table also lists the specific
chapters that discuss these features in detail, thus serving as an index into the programming model
and implementation chapters of this dissertation. The request/monitor mechanism reterenced in the
table is the interposition mechanism enabled by nested environments: it lets an outer environment

interpose on all interactions of nested environments with the kernel and the outside world.



Table 3.2: one.world and distributed systems concerns. Issue specities the distnibuted systems con-
cern. Feature describes the corresponding one.world service. Chapter lists the programming model
or implementation chapter discussing that teature.

- Issue ! Feature Chapter
" Process Environments contain applications. 4.1 L
- management ~Checkpointing captures an application’s execution state and | 4.5.5.4
| migration moves or copies an application.
" Addressabtlity/  Protection domains limit access to direct references. 4051
. Naming The environment hierarchy imits access to nested environ- | 4.1
| | ments. .
| " Discovery and remote event passing provide access to arbitrary | 4.4.5.3
‘L | event handlers. L
" Execution T Applications are composed from components that exchange | 4.3.5.1
i model \ asynchronous events.
| Operations manage event exchanges. notably those with event | 4.3.2.5.2
! I handlers outside an application.
r Storage i Structured VO persistently stores tuples in environments and | 4.2
! | the query engine performs searches across stored tuples.
! Commumications | Discovery locates remote recetvers and remote event passing | 4.4, 5.3
sends events to remote receivers. J
Securnity Protection domains i1solate applications. $0.51 |
The request/monitor mechanism can be used to implement ref- | 4.3.1
erence monitors and auditing. |
Resource The requestmonitor mechanism can be used to interpose on | 4.3.1 '
allocation requests for system services. ]
Extensibtlity The request/monitor mechanism can be used to add new ser- | 4.3.1
: vices.




Chapter 4

PROGRAMMING MODEL

We now explore one.world’s programming model in detml. We describe our architecture’s services
and their operations. give code examples. and explain our design decisions. In contrast to the pre-
vious chapter. which i1s organized around honizontal shices through our architecture—foundation
services, system services, and library support. this chapter 1s organized around conventional sys-
tems concerns. focusing on the perspective of application developers becoming famihar with our
architecture. In particular. we start with namespaces in Chapter 4.1 and introduce environments
as containers for apphications. their persistent data. and other environments. We follow with data
management in Chapter 4.2 and discuss tuples. the query language and query engine. as well as
structured 1/0. In Chapter 4.3, we explore one.world's execution model and present events. the re-
quest/monitor mechanism. and operatons. Next, in Chapter 4.4, we discuss the communication
model and describe discovery and remote event passing. Finally. in Chapter 4.5, we explore ap-
plication persistence and present checkpointing and migration. We do not further discuss virtual
machines. as our architecture directly builds on existing virtual machine technology.

In summary. an application 1n one.world consists of an environment. which acts as the names-
pace for the application’s objects and can include code. data, and other environments. The applica-
tion's code executes in response to asynchronous events. which may be generated by the system. the
application itself. or by other applications. potentially on other devices. Events are delivered through
a rich event delivery interface. The application’s data is stored in an assoctative tuple store, which
is part of the application’s environment. The application’s execution state can be checkpointed and
stored in its environment so that the application can later be reverted to the saved state. The appli-
cation can also be migrated to a different device. which either moves the application’s environment
and all its contents to that device or creates a copy on the remote device. one.world itself executes

as a set of kernel services. available to, and mediating, all applications running on a device.



4.1 Namespaces

Comparable to processes 1n conventional operating systems. environments host applications and—
to ensure that different applications cannot directly intertere with each other and can be managed
independently—isolate them from each other through protection domains. By default. each environ-
ment represents its own protection domain: though. a protection domain may span several. nested
environments. To enforce 1solation, all data 1s copied between protection domains. Applications
can only exchange event handlers. thus enabling them to communicate with each other. Further-
more. operations on environments and access to an environment’s tuple storage are limited to the
requesting environment and 1ts descendants. thus making 15 possible to imit an application’s effects
to 1ts subtree. which 1s important for pervasive computing environments as potentially untrusted
applications move from one device to another.

Environments provide structure not only by isolating applications tfrom each other. but also by
grouping application functionafity and persistent data within the same container. The grouping of
functionahity and data enables one.world to load an application’s code tfrom its environment and to
store the apphcation’s checkpoints with the apphication. More importantly. it simplities the devel-
opment of pervasive apphications that follow a user through the physical world. as an application
and 1ts datet. including code and checkpoints. can be migrated in a single operaton. At the same
ume. environments always maintain a clear separation between functionality and data. which can
be accessed independently and. unlike objects. are not hidden behind a unitying intertace. In addi-
tion to providing structure, environments provide control through nesting: an outer environment has
full control over an inner environment. including the ability to interpose on the inner environment’s
interactions with the kernel and the outside world. Nestung thus makes it possible to easily factor
important pervasive computing features. such as the logic to control migration and the ability to syn-
chronize data with other devices. out of an application and reusing that functionality across several
applications. To exploit nesting for this purpose. the reusable functionality is provided by an outer
environment. and the application relying on that functionality 1s placed 1nto an inner environment.

Table 4.1 summarizes the environment operations. The majority of these operations works as
expected and is used to create and delete environments and to start and stop applications. The

checkpoint, restore. move, and copy operations are used for checkpointing and migration and are



Table 4.1: The environment operations. Operation specifies the environment operation. and Explu-
nation describes the operation.

Operation | Explanation T
| create Create a new environment. ;
! rename Rename an environment.
: load Load an application into an environment.
! activate Activate the application. }
" terminate | Terminate the apphication. !
 unloud Unload the apphication.

. destroy Delete the environment and all its contents. |
" move Move the environment and all its contents. |
copy Copy the environment and all its contents.

i checkpoint | Checkpoint the environment. '

restore Restore a previously captured checkpoint.

described in detail in Chapter 4.5. To perform an operation, an application specities the operation.
the targeted environment. and any additional arguments as necessary.  Environments are named
by either a globally umque identitier [65] (GUID) or a human-readable path name. which. Iike a
path name in Unix. 1s composed of individual environments” names separated by slashes ¢ ). An
environment’s GUID cannot be changed after creation. so that it can be used as a umque reference
for that environment. In contrast. an environment’s human-readable name. just like a directory name
in conventional operating systems, can be changed after creatton through the rename operation to
accommodate changing user needs. one.world's kernel runs tn a device's root environment. which.

just like the root directory in Unmix. is named ™.

4.2 Data Management

Data management in one.world. that is, the ability to query. store, and exchange information. 1s
based on tuples. Tuples define the common data model. including the type system. for applications
running in our architecture. They are self-describing., mutable records with named and (usually)
typed fields. Valid field types include numbers, strings. and arrays of basic types. as well as tuples.
thus allowing tuples to be nested within each other. Arbitrary objects can be stored in a tuple in

form of a special container that encapsulates a serialized representation of the object.



By providing a common. structured data model. tuples enable our architecture’s data manage-
ment services. notably the query engine and structured I/O. As a result., tuples let pervasive ap-
plications directly encode and exchange the information they manage. They also obviate the need
for separate internal and external representations and for translating between different data formats.
generally simplifying the shanng of information. Consider. for example. a personal mformation
management application. It can directly encode a user’s appointments. contacts, notes. and mes-
sages as tuples and. through the query engine and structured VO described below. search. store. and
exchange that data. As a result. 1t becomes easter to make a user’s data available throughout her
living and working spaces and to synchronize between different devices. appheations. and people.

To capture the structure of application dota. tuples are statically declared and strongly typed.
They have a fixed set of fields with specitic types and the overall tuple has a type. However. our
architecture also includes a special wple. called DynamicTuple. In contrast to other tuples. the
ficlds of a dynamic tuple can be dynamically added and removed and are dynamically typed. that
1s. they can have any allowable field type. As a result. dynamic tuples are more flexible. but do
not offer typing guarantees. They are useful for representing ad hoc data. such as another wple’s
metadata. or for prototyping data records during applicauon development.

All tuples share the same base class and have an ID field specifying a GUID to support symbolic
references. as well as a metadata tield to support application-specitic annotations. Each tuple also
has a set of methods to programmatically retlect 1ts structure and to access its data. thus allowing
applications to inspect and access data ttems with unknown types. Finally. cach tuple has methods
to validate its semantic constraints (for example. to determine whether a tuple’s field values are
consistent with each other) and to produce a human-readable representation. The base class for all
tuples. which defines these common fields and methods. is shown in Figure 4.1. [t illustrates the

simple interface for inspecting and accessing tuples programmatically.

4.2.1 Querv Language and Query Engine
So that applications can easily search and filter data. such as a user’s appointments or contacts., our
data mode! also defines a common query language for tuples. That language 1s used by the APIs

to the structured I/O and discovery services. Queries support the comparison of a constant to the
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public abstract class Tuple /
;) The ID and metadata fields.
public Guid :d;
public DynamicTuple metaData;

Programmatic access to a tuple’'s fields.
public final Object get(S-ring name) (...}
public final wvoid set (String name, Object wvalue) ...}

\

ublic final Object remove(String name}) ...}
)

public final List fields() {...:

public final Class getType(String name) (...:

validazion of

tup.e’'s constraints.
public void val:d (1 chr

ows TuD.eException

. A tup.e's numan-readable represenzation.
public String zoString() (...}

Figure 4.1: Detimtion of a tuple. All tuples inhent this base class and have an ID tield o sup-
port symbolic references and a metadata tield to support application-specitic annotations. They also
have a set of methods to programmatically access a tuple’s fields. to validate a tuple’s semantic con-
stratnts, and to convert the tuple into a human-readable representation. A Guxd 1s a globally umque
idenutier. A Dyrnam:cTuple s a spectal tple: its tields can be of any type and. unlike those
of other tuples. can be dynamucally added and removed. The accessor methods are final and are
implemented using reflection. In contrast. individual tuple classes can overnde the val:idaze ()
and toString () methods to define their own semantic constraints and human-readable represen-
tation, respectively. Note that the remove () method works only for dynamic tuples.

value of a field. including the fields of nested tuples. the companison of a type to the declared or
actual type of a tuple or field. and negation. disjunction. and conjunction. Since queries are data
themselves, they are also expressed as tuples.

An example query n our architecture’s query language 1s shown in Figure 4.8 on page 45.
It consists of several, nested Query tuples, which express a type comparison (as indicated by
the Query .COMPARE_HAS_SUBTYPE constant), a value companson (as indicated by the Que-
ry.COMPARE_EQUAL constant). and a conjunction (as indicated by the Query. BINARY_AND

constant). The overall query matches tuples of type UserDescriptor whose user field equals
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Table 4.2: The structured /O operations. Operation specities the structured [/0 operation. Argument
specifies how tuples are selected for that operation. Explanation describes the operation.

[ Operation | Argument | Explanation :

L put . Tuple . Write the specified tuple.

| read Query : Read a single tuple matching the specitied query. ‘
i query Query " Read all tuples matching the specitied query. ;
U listen " Query * Observe all tuples that match the specified query as they are wnt- !
f 1 . ten. 4
, delete ID ' Delete the tuple with the specitied [D. ‘

the value of the fetchUser vanable.
The query engine processes queries over tuples. as expressed in our architecture’s query lan-
guage. To use the query engine. services and applications instantiate a filter for a specific query

(such as the one illustrated above) and then feed tuples to the filter. Tuples matching the query are

passed through and tuples not matching the query are dropped.

4.2.2  Structured I/0

Structured /O builds on our architecture s data model and lets applications persistently store tuples
in environments. Each environment’s tuple storage 1s separate from that of other environments.
Comparable to the primary key 1n a relational database table. a tuple’s ID uniquely identifies the
tuple stored within an environment. In other words. at most one tuple with a given ID can be stored
in a given environment. The structured VO operations support the writing. reading. and deleting of
tuples and are summarized in Table $.2. They are atomic so that their eftects are predictable and can
optionally use transactions to group several operations into one atomic unit. To use structured VO.
applications bind to tuple storage and then perform operations on the bound resource. All bindings
are controlled by leases [40]. which limit the time an application can access an environment’s tuple
storage. Applications can renew these leases to increase the length of access or cancel them to
relinqutsh access.

In the spirit of Unix’s unitied interface to storage and networking [73]. structured [/O also pro-
vides the same basic API for reading and writing tuples across the network. Because standard

communication protocols, such as TCP. provide no persistence and employ only limited buffering.



structured /O networking supports only a subset of the operations shown in Table 4.2. In particular.
it only supports the put. read. and listen operations and not transactions. To use structured VO net-
working. applications bind to network endpoints instead of tuple storage. Network endpoints can
be either UDP or TCP unicast sockets or UDP multicast sockets. Just as bindings for tuple storage.
bindings for network endpoints are leased.

We chose to base IO on a structured data model instead of using unstructured bytestrings be-
cause. by definition, tuples preserve the structure of application data and thus simphfy the shanng
and searching of data. Furthermore, tuples free applications trom exphaitly marshaling and unmar-
shaling data duning /O and from implementing their own, internal database funcuonahty, which s
a common strategy for desktop applications [74] and leads to considerable duplication of eftort be-
tween applications from difterent vendors. We chose tuples instead of XML [13] because tuples are
stmpler and easier to use. The structure of XML-based data 1s less constriined and also more com-
pheated. including tags. attributes, and name spaces. Furthermore. interfaces to access XML-based
data, such as DOM {64]. are relauvely complex.

Structured /O distinguishes between storage and networking. instead of providing a unified
tuple space service {21, 26, 37, 79. 116]. because such a separation better reflects how pervasive
applications store and communicate data. On one hand. many applications need to modify stored
data. For example. a personal information manager needs to be able to update stored contacts and
appointments. Structured VO storage lets applications overwnite stored tuples by simply wnting a
tuple with the same ID as the stored tuple. In contrast. tuple spaces only support the addition ot
new tuples. but existing tuples cannot be changed. On the other hand. some applications. such as
streaming audio and video. need to directly communicate data in a timely fashion. Structured VO
networking provides that functionality. In contrast. tuple spaces store all tples before delivering
them and consequently retain them in storage. This is especially problematic for streaming audio
and video, since data tends to be very large. As a result, tuple spaces represent a semantic mismatch
for many pervasive applications. providing too little and too much functionality at the same time.

An additional concern is that tuple spaces are not amenable to layering in asynchronous systems.
In particular. the in or take operation—an atomic read and delete—makes it hard to layer additional
services, such as replication, on top of a tuple space. The problem is that the tuple to be deleted

is only known after the in or take has been performed by the tuple space service. thus requinng
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public interface EventHandler ¢
Handle the evenct.
public vo:d handle(Event e):

Figure 4.2: The event handler interface. An event handler has a single method that takes the event
to be processed as its only argument and returns no result.

that the replication layer intercept both the original request and the corresponding response. In
contrast. a replication layer on top of structured O only needs to intercept requests. never responses.
because requests for the destructive pur and delete operations are sufficiently descriptive to specify

the affected tuples.

4.3 Execution Model

Having described one.world’s facthues tor data management. we not turn to our architecture’s ex-
ecution model. In one.world. all functionality 1s implemented by event handlers that process asyn-
chronous events. Events are appropriate for pervasive apphcations, as they make changes in an
application’s execution context—such as a person or device moving to a different location—explicit
and thus provide the application with an opportunity to adapt to those changes. Since events are data.
they too are represented by tuples. In addition to the ID and metadata tields common to all tuples. all
events have a source field referencing an event handler. This event handler receives notification of
failure conditions during event delivery and processing. as well as the response for request/response
interactions. Furthermore. all events have a closure field. which can be of any allowable tuple field
type including a tuple and is declared to be an Object. When responding to an event. by send-
ing another event to the original event’s source event handler. the closure of the original event 1s
returned with the new event. Closures thus help simplity the implementation of event handlers. as
applications can include any additional state needed for processing a response in the closure of the
original request.

As shown in Figure 4.2, event handlers implement a uniform interface with a single method
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Figure 4.3: [llustration of the relationship between imported and exported event handlers. Boxes
represent components, indentations represent tmported event handlers. and protrusions represent
exported event handlers. The dotted arrow indicates the direction of event flow. In this example.
the component named Char imports an event handler named imported. and the component named
AudioSink exports an event handler named exported. The two event handlers are linked. When an
event 1s sent to the imported event handler. that 1s. when that event handler 1s invoked on an event.
the event 15 forwarded to the exported event handler. which then processes it In the case of Chat
and AudioSink. Chat sends received audio messages to the AudioSink. which then plays back the
audio contained in the messages.

that takes the event to be processed as its only argument and returns no result. Any result for a
request/response interaction must be sent as a regular event to the event handler referenced by the
request’s source field. Event delivery has at-most-once semantics. both for local and remote event
handling. For remote event handling. at-most-once semantics are appropriate because. in lieu of
transactional delivery protocols (which are too heavy-weight for basic event delivery). a remote
device may fail after it has accepted an event but before the intended reciprent had an opportunity
to process 1t. For local event handling. exactly-once delivery 1s the norm. However, at-most-once
semantics allow one.world's implementation to recover trom pathological overload conditions by
selectuvely shedding load.

To simplify code reuse. application functionality 15 implemented by components. Components
are units of code that support a uniform linking protocol and interact solely by exchanging events.
They import and export event handlers, exposing the event handlers for linking. and are instantiated
within specific environments. Although imported and exported event handlers can be added and re-
moved after component creation. they are typically declared in a component’s constructor. Imported
and exported event handlers can be finked and unlinked at any time. After linking an imported event
handler to an exported event handler. events sent to the imported event handler are processed by the

exported event handler. Unlinking breaks this connection again. This relationship between imported



public static void init(Environment env, Object closure] {
:+ Create Emcee's component.
Emcee comp = new Emceel(env) ;

Link the component with i1ts environment.
env.link("main", "main", comp);
comp.linki"request", "request”, env):

Figure 4.4: Code example for imuializing an application. An inttiahization method takes as its ar-
guments the environment for the application and a closure, which can be used to pass additonal
arguments, for example, from a command lhine shell. The method shown in this figure tirst in-
stantiates the Emcee component and then links that component with its environment. It links the
main event handler imported by the environment env with the main event handler exported by
the component comp. and the request event handler imported by the component comp with the
reques= event handler exported by the environment env. The role of the main and request
event handlers is explained in Chapter 4.3.1. Note that linked event handlers need not have the same
name. although they do in this example. This code example is taken from Emcee’s source code.

and exported event handlers 1s illustrated in Figure 4.3.

An application’s main component has a static imtiahization method that instantiates its compo-
nents and performs the imual hinking. It1s catled by our architecture when loading the application
into 1ts environment through the load operation histed in Table 4.1. While the application 1s runnming.
it can instantiate additional components. add and remove imported and exported event handlers. and
relink and unlink components as needed. An example iniuahization method is shown in Figure 4.4.
It instantiates a single component. representing Emcee’s main component. and then pertorms two
linking operations. After these simple initialization steps. the Emcee application is fully instantiated
and ready to execute.

When an event is sent between components in different environments. the invocation of the
exported. that is, receiving, event handler on the sent event is performed asynchronously. The cor-
responding invocation of the imported, that is. sending. event handler returns (almost) immediately.
However. when an event is sent between components in the same environment. the event handler

invocation is performed as a direct method call. so that the event is delivered reliably and efficiently.



This default can be overridden at link-time. so that events within the same environment are also sent
asynchronously.

We chose to use asynchronous events instead of synchronous invocations through. for example.
regular procedure calls or a mix between regular procedure calls and asynchronous callbacks for
three reasons. First and foremost. asynchronous events provide a natural fit for pervasive computing.
as applications often need to raise or react to events. such as sending or recenving a text message or
adapting to the execution context after a migration. Second. where threads implicitly store execution
state in registers and on stacks. events make the execution state expheit. Systems can thus directly
access execution state, which 1s useful for implementing features such as event prioritization or
checkpornting and migrauon. Finally. taking a cue from other research projects [23. 42.50. 86. 114]
that have successfully used asynchronous events at very different points of the device space. we
believe that asynchronous events scale better across different classes of devices than threads.

We chose a uniform event handhing interface because it greatly simplities composition and 1n-
terposition. Event handlers need to implement only a single method that takes as 1ts sole argument
the event to be processed. Events. in turn. have a well-defined structure and are self-descrnibing.
making dynamic inspection feasible. As a result. event handlers can easily be composed with each
other. For instance. the umiform event handling interface enables a flexible component model. which

supports the linking of any imported event handler to any exported event handler.

4.3.1  Interacting with the Kermel and Other Environments

To an application. its environment appears to be a regular component. Each environment imports
an event handler called main, which must be linked to an application’s main component before the
application can be started. It is used by one.world to notify the application of important events, such
as activation, restoration. migration. or termination of the environment, and thus exposes contextual
change to the application.

Each environment also exports an event handler called request and imports an event handler
called monitor. Events sent to an environment's request handler are delivered to the first ancestral
environment whose monitor handler is linked. The root environment’s monitor handler is always

linked to one.world’s kernel, which processes requests for environment operations, structured I/O.
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Figure 4.5: Illustration of the request/monitor mechanism. Boxes on the left represent apphication
components and boxes on the right represent environments. The dotted arrow indicates the direction
of event flow. The app environment 1s nested within the debugger environment. The debugger
environment’s monitor handler 1s hinked and thus intercepts all events sent to the app environment’s
request handler. The use of the main handler 1s explained 1n the text.

discovery, and remote event passing. Consequently. the environment request handler provides our
architecture’s system call terface. and applications use it for interacting with the kernel. For ex-
ample. Emcee’s imtialization method as shown in Figure 4.4 on page 36 links to its environment’s
request handler so that Emcee can utilize one.world’s services. Furthermore, by linking to the mon-
itor handler. an application can interpose on all events sent to a descendant’s request handler. For
example. a debugger can monttor any application simply by nesung the application in tts environ-
ment, linking to its own monitor handler, and observing the application’s request stream. Simularly.
a replication service can synchronize any application’s data with another device by intercepting the
application’s structured VO operations (in fact. as described in Chapter 6.1.1. our replication service
does exactly that). This use of the request/monitor mechanism is illustrated n Figure 4.5.

As already mentioned in Chapter 4.1. one.world enforces the nesting of environments by re-
stricting access to tuple storage and environment operations, such as creating or deleting an envi-
ronment. to the reguesting environment and its descendants. When an application sends an event to
its request handler. the event's metadata is tagged with the identity of the requesting environment.

Before granting access to tuple storage or performing an operation on an environment, the kernel



verities that the requesting environment 1s an ancestor of the environment being operated on.

We chose to represent environments as regular components. because it offers considerable flex-
ibility and power. In particular. the request/monitor mechamsm makes terposition trivial and
greatly simplifies dynamic composition as illustrated above. Furthermore. because of the uniform
event handler interface. the request/monitor mechanism 1s extenstble: 1t can handle new event types
without requiring any changes. Applications can nspect events using the tuple accessor methods
shown in Figure 4.1 on page 31. or pass them unexamined up the environment hierarchy. Finally.
the same mechanism can be used to provide secunity by interposing a reference monitor [3] and
auditing by logging an application’s request stream. [t thus obviates the need for fixing a particular

secuntty mechanism or pohicy 11 one.world’s kernel [43].

4.3.2  Reliably Managing Event Exchanges

While asynchronous events provide a good fit for pervasive computing, they also rawse the question
of how to manage event exchanges. especially when compared to the more famihar thread-based
programming model. Of particular concern are how to maintan the state associated with pending
request/response interactions and how to detect farlures, notably lost events. These 1ssues are espe-
crally pressing for pervasive computing environments. where people and devices keep coming and
going. and where failures are a common. not an exceptional. occurrence.

Becuause of our asynchronous execution model. we cannot rely on synchronous invocations.
possibly using a thread per invocation, to maintain the state of pending request/response interactions
and to detect failures. After all. any response to a request s delivered as a regular event and cannot
be returned as the result trom the oniginal event handler invocation. Furthermore. as already argued
in Chapter 2. we are suspect of a programming model that treats operations that may. and can
frequently. fail just like regular procedure or method invocations. It too easily results in applications
that do not appropnately account for all failure conditions. At the same time, in our experience
with writing event-based code. established styles of event-based programming. such as event loops
or state machines, are equally unsuitable. Because they combine all application logic into a single.
basic control block, they are only manageable for very simple applications that process few distinct

events.
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Figure 4.6: [llustration of the operation library. The box represents an operation. Protrusions repre-
sent event handlers. which. unlike the event handlers shown in Figure 4.3 on page 35. are directly
referenced. The dotted arrows indicate the direction of event flow. To manage asynchronous re-
quest/response interactions between a client and a service. an operation 15 interposed between the
event handler accepting requests and the event handler expecting responses. The operation matches
each request with exactly one response. It automatically detects imeouts and performs retries.

After some expenimentation. we found the following approach, which we call the logic/operation
pattern. considerably more successful. Under this pattern, an application 1s partitioned into logic
and operations. which are implemented by separate sets of event handlers. Logic are computations
that do not fail. barning catastrophic failures. such as creating and filling in a text message. Opera-
ttons are teractions that mayv farl, such as sending a text or audio message to 1ts intended reciprents.
Operations maintain the state associated with these request/response interactions and also include
all necessary fatlure detection and recovery code. A failure condition 1s reflected to the appropriate
logic only if recovery fails repeatedly or the failure condition cannot be recovered fromin a gen-
eral way. As a result, the logic/operation pattern. unlike synchronous invocations. cleanly separates
actual application logic from outside interactions. notably I/O. and their failure detection and re-
covery. Furthermore, unlike event loops or state machines. the logic/operation pattern does allow
for the nesting of logic and operations. thus supporting more modular application code and scaling
better with application size.

The Operation library reifies the logic/operation pattern. As illustrated in Figure 4.6. 1t is
an event handler that connects an event handler accepting requests with an event handler expecting
responses. For every request sent to an operation, the operation keeps the state of the pending
interaction, including the request’s closure, and sends exactly one response to the event handler
expecting responses. The operation automatically detects timeouts and performs retries. If all retries

fail. it notifies the event handler expecting responses of the failure through an exceptional event.
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operation = new Operation(l, Constants.OPERATION_TIMEOUT,
timer, request. continuation);

Figure 4.7: Code example for creating an operation. The newly created operation does not perform
any retries, times out after the default umeout. and uses the imer t imer. Requests are sent to the
reqguest event handler and responses are forwarded to the continuatiorn event handler. This
code example 1s taken from Emcee’s source code.

Operations can be nested and can also be used on both sides of mulu-round interactions. such
as those found in many network protocols. As a result. operations provide an eftective way for
expressing complex interactions and structuring event-bused applications.

To utilize the operation hibrary, an application simply creates a new operation and then uses
the operation nstead of the original event handler for issuing requests. Example code for creating
an operation 1s shown in Figure 4.7. The newly created operation connects the request event
handler for recerving requests to the cont inuat tonevent handler tor receving the corresponding
responses. As shown in Figure 4.8 on page 45 and Figure 4.9 on page 50. the operation 1s then used

for 1ssuing requests 1nstead of sending them to the request event handler directly.

4.4 Communication Model

To provide ubiquitous information access. pervasive applications need to frequently interact with
remote devices and services. As a result. they need to easily locate remote resources and then com-
municate with them. In this section, we explore how one.world addresses these common application
needs through service discovery. which provides the ability to locate resources by querying the cor-
responding resource descriptions. and remote event passing (REP). which provides potnt-to-point
communications between devices. We discuss the two services together because they are not only
part of our architecture’s communication model but they are also accessed through a single, inte-
grated APL. In summary. they are based on a simple model. under which applications name a remote
event handler either by a query over a tuple for discovery or by its device and a GUID or name for

REP. Discovery resolves the query in a directory that represents all discoverable resources on the



iocal network. while REP routes events directly to the specified device.

The primary challenge in designing the communications facilities for one.world 1s to provide
services that are more flexible than established point-to-point communications technologres and
support a rich set of communication patterns. [n particular. as people and devices move through
the physical world. service discovery assumes a cntical role for pervasive applications. After all. 1f
an application cannot locate necessary resources. it cannot function. However. previous discovery
systems, such as Jini [5] and INS [2]. expose considerably different APIs with distinct options. thus
ratsing the question of what options to support in one.world’s discovery service.

To this end. we classify the magor discovery options through a set of choices. As illustrated by
the following discussion. all the options described below are indeed usetul for pervasive applica-
tons. and. consequently. they are all supported by one.world’s discovery service. The first chowce
retlects the binding time and determines when to pertorm a discovery query. With early binding. an
application tirst uses discovery to resolve a query and then point-to-point communications to tater-
act with the resolved resource. Early binding 1s appropnate when an application needs to repeatedly
send events to the same resource. such as a specific, close-by wall display. or when services can
be expected to remain in the same focation, such as those runming on dedicated servers. In con-
trast. late binding [2] combines query resolution and event routing into a single operation. and the
discovery service routes the event directly to the matching resource. While late binding introduces
a performance overhead for every sent event, it also 1s the most responsive and thus most rehable
form of communication in a highly dynamic environment. The second choice reflects the specificity
and determines the number of resources receiving an event. Anycast sends the event to a single
matching resource. such as the above mentioned wall display. while multicast sends the event to all
matching resources. such as all users to chat with.

Taken together, the binding time and speciticity cover the design space of previous discovery
systems, where services make resources available under descriptors and clients query for matching
resources. When determining which of these options to use in an application. the primary choice
is whether to rely on early or late binding; whether to use anycast or multicast typically follows
directly from the application’s requirements. In our experience. late binding is generally preferable
over early binding for pervasive applications. as it is more responsive in an ever changing computing

environment. However, if an application sends many, possibly large messages to the same receiver



in short succession. the overhead of repeatedly resolving discovery queries becomes too large. and
early binding represents the more appropriate choice. At the same time. with early binding. the
application needs to be prepared to rediscover the recewver if its computing context changes.

An additional. third choice reflects the query target and determines the entity on which to per-
form a discovery query. Typically. a query s performed on the resource descriptors. and the first two
choices assume resource descriptors as query targets. However. the query can also be performed on
the events themselves. In this case. an application receives all events sent through late binding dis-
covery that match the query. Using the event as a query target constitutes a form of reverse lookup
and 1s useful for implementing utilities that. for example. log and debug remote communications
or bridge between different communication protocols by intercepting messages of one protocol and
issuing those of the other. In the former example. the reverse lookups are observing. that is. they do
not count as matches for anycasts, while in the latter example. the reverse lookups are consuming,
that 1s, they count as matches for anycasts (after all. the intent 15 to intercept events).

With our classification of discovery options tn place. we now turn to the API for discovery
and remote event passing. Both services leverage our architecture’s uniform data model and event
handling interface to expose a common communications APL which supports all discovery options
described above as well as point-to-point communications with only three operations, namely ex-
port. resolve, and send. In short. the export operation makes an event handler accessible across the
network. while the resolve operation performs early binding discovery lookups. and the send opera-
tion routes events both for point-to-point communications and late binding discovery. Conceptually.
our architecture’s discovery service relies on a directory that represents all discoverable resources
on the local network.

In detail, the three operations work as following:

Export. The export operation makes an event handler accessible across the network by establishing
a mapping between a descriptor and the actual event handler: for discovery. all mappings are
collected in a single directory for the local network. The descriptor’s type determines how
the event handler is exported. If the descriptor is null or a Name. the event handler is
exported for point-to-point communications. If it is a Query. the event handler 1s exported

for reverse lookups on the events sent through late binding discovery. For all other tuples. the



Table 4.3: Options for exporung event handlers to remote event passing and discovery. Descriptor
specities the tuple under which an event handler 1s exported. Explanation describes how the event
handler can be accessed.

| Descriptor i Explanation
fnull . Make the event handler accessible through point-to-pomnt communica-
| 1 tions. The event handler can be referenced by the GUID returned by the

' export operation.

Name © Make the event handler accessible through point-to-point communica-
' tions. The event handler can be referenced by the name contained 1n the

| Name tuple.
Make the event handler accessible for reverse discovery lookups. An
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additional flag speciies whether the reverse lookups are consuming or
observing. The former count as matches for anycast. while the latter do
- not. The event handler cannot be directly referenced. However. events
sent through late binding discovery and matching the query are routed to
the exported event handler.

~ All other tuples | Make the event handler accessible for regular discovery lookups. The
‘ ' event handler can ke referenced by a query matching the specitied tuple. J

event handler 15 exported for regular discovery lookups. Comparable to the use of leases tor
structured /O (as described in Chapter 4.2.2). the resulting binding between the event handler

and descriptor 15 leased.

Table 4.3 summanizes the options for exporting event handlers. Note that REP provides two
alternatives for exporting event handlers. so that clients can erther reference a specific service
instance (through a GUID) or a service independent of the current instance (through a name).
Furthermore. when exporting an event handler to discovery. the event handler 1s automatically
exported for point-to-point communications as weli (as if the descriptor was null). so that

the discovery service can build on REP for its implementation.

Resolve. The resolve operation looks up event handlers in the discovery directory. so that they can
be used for point-to-point communications. [t takes a query and returns either any or all
matching event handlers that have been previously exported for regular discovery lookups. If

no event handler matches the query. the resolve operation results in a failure notufication.

Send. The send operation sends an event to a previously exported event handler. The targeted event



SymbolicHandler destination;
if (null == fetchLocation)
Location is unknown; use discovery.
destination = new DiscoveredResource (new
Query (new Queryi{""
Query.COMPARE_HAS_SUBTYPE,
UserDescriptor.class),
Query.BINARY_AND,
new Query ("user", Query.COMPARE_EQUAL, fetchUser)));

; else !
Location i1s Known; use point-to-point communicatlons.
destination = new
NamedResource ( fetchlLocazion, " User " + fetchUser):

el

opera-ion.handle (new RemoteEvent (this, closure, desTinaticn, msg)}:

Figure 4.8: Code example for sending a remote event. This example sends the event msg tor user
fetchUser, whose location £e=chlLocation may or may not be known. [f the location i1s not
known. the event 15 sent through late binding discovery. The discovery query matches tuples of
type UserDescr.ptor whose user field equals fecchi’ser. If the location 1s known, the
event 1s sent through point-to-point communications. The operation forwards the RemoteEvent
to one.world’s kernel. which then performs the actual send operation. This code example 15 taken
from Emcee’s source code.

handler 1s specified by a so-called symbolic handler that contains the information necessary
for routing the event. For late binding discovery, the symbolic handler specifies the query and
whether to pertorm anycast or multicast. The event 1s delivered to any or all event handlers
matching the query n the discovery directory. For point-to-point communtcations. the sym-
bolic handler specities the device exporting the event handler and the corresponding GUID
or name. and the event is delivered to the event handler that has been exported under the
specified GUID or name on the specified device. Both for discovery and point-to-point com-
munications. if no actual event handler matches the symbolic handler. the sender 1s noutied

of the failure condition.

Example code for sending an event through both late binding discovery and REP 1s shown in

Figure 4.8. It illustrates how an application can easily switch between either late binding discovery
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and point-to-point communications. simply by using a different symbolic handler. Switching from
anycast to multicast for late binding discovery is even simpler. as it requires only an additional

boolean argument for the constructor of the DiscoveredResource.

4.5 Application Persistence

As descnbed in Chapter 4.1, environments are containers for applications. persistent data. and other
environments. They provide structure by grouping applications and their data and by isolating
ditferent applications from each other. They also provide control by nesting environments within
each other and by letung an outer environment interpose on an mner environment’s interactions with
the kernel and outside world. However. providing structure and control 1s not enough. In particular,
as pervasive applications often run on portable devices. 1t must be easy to protect them against major
farlures. such as a device's batteries running out. More importantly and as mentioned several times
already. 1t must be easy to build applications that follow a person from device to device as she moves
through the physical world.

To address these important needs of pervasive applications. one.world provides checkpornting
and mugration as common application building blocks.  The checkpointing service provides the
checkpoint and restore operations listed in Table 4.1 on page 29. The checkpoint operation captures
the 1n-memory state of an environment tree and then stores the captured state as a tuple in the root
of the checkpointed tree. The restore operation reads a previously stored checkpoint and restores
the execution state to the saved state. The migration service provides the miove and copy operations
listed in Table 4.1. Both operations capture the in-memory state of an environment tree, move the
environment tree. including the just created checkpoint and all stored tuples. to a different device.
and then restore the checkpoint. They differ in that the move operation deletes the onginal envi-
ronment tree, while the copyv operation leaves the original tree in place. In contrast to transparent
migration systems, such as Sprite [28]. our architecture’s checkpointing and migration services are
fully visible to applications. Notably. applications are explicitly notified after they have been re-
stored from a checkpoint or have been migrated to a different device. so that they can adapt to a
changed execution context.

As hinted at by this first description. the functionality of the checkpornting and migration ser-
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vices can be detined more precisely in terms of three functions: capture-state( ) to create a check-
point tuple representing an environment tree’s IN-memory state. fransfer-tree() to communicate an
environment tree’s complete contents from one device to another. and restore-state( ) to recreate an
environment tree’s in-memory state from a previously created checkpoint tuple. Using these three
functions. the checkpoint operation simply invokes capture-state( ) and stores the resuling check-
point tuple in the root of the environment tree. while the restore operation reads such a checkpont
tuple and then invokes restore-state( ) on the tuple. Both the move and copy operations represent
a sequence of caprure-statel ). transfer-tree( ). and restore-state( ) invocations. with the ditference
that the move operation also destroys the ongimal environment tree. With this overview over our
architecture’s checkpointing and migration services in place. we now discuss the three functions in
detail.

The capture-state() function creates a bytestring representing an environment tree’s in-memory
state. [t relies on the virtual machine to provide a umform execution platform across different
hardware architectures and on object sertahization to convert between virtual machine objects and
bytestrings. By traversing all objects reachable from a set of well-detined roots—the main and mon-
itor event handlers introduced 1n Chapter 4.3.1. the capture-state( ) function captures the in-memory
state of the application obgects instantiated in the environment tree. Since all communications
one.world are through asynchronous events. the capture-state( ) tunction also captures the environ-
ment tree’s execution state by sernalizing pending event handler. event. invocations. Comparable
to bus stops 1n Emerald {98]. which define application states that are sate to mugrate. execution
state can only be captured for pending ‘event handler. evenr; invocations. Invocations that are cur-
rently being executed need to run to completion: mvocations that do not complete within a constant
waiting period are forcibly terminated. The capture-state( ) function does not capture the state of
currently executing (event handler, event' invocations, because capturing them requires access to
the virtual machine’s execution stack. However. many virtual machines. such as the Java virtual
machine [70] but unlike the Squeak virtual machine [47]. do not explictly expose their execution
stacks and would thus require modifications. which would limit portability.

While the capture-state() function does capture the state of the environment tree’s application
objects and pending /event handler, event) invocations. it does not include references to resources

outside the environment tree. Since environments are isolated from each other, only references to
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event handlers can be exchanged between environments: all other data 1s copred. Consequently.
the caprure-state() function tests each event handler whether it 1s implemented by code running
in one of the environments 1n the tree. If the event handler is part of the tree. 1t 1s written to the
checkpoint. If 1t is not part of the tree. it is replaced by a null value. Environments thus pro-
vide a well-defined boundary for the state included in a checkpoint. and nulling out event handlers
provides a simple contract for revoking access to outside resources. The caprure-state(j tunction
revokes access to outside resources in order to avoid residual dependencies {91]. which require an
altogether well-connected computing environment. However. pervasive computing environments.
with their refrance on wireless networking technologies such as 802.11 [38] or Bluetooth [13]. often
exhibit weaker connectivity than traditional local networks (78, 102]. Furthermore. disconnected
operation 15 a relatively frequent occurrence. for example. as people travel in cars or on wrplanes.
and connections. such as those using cell phones. often have high latency and low bandwidth.

The transfer-treef ) tunction eagerly communicates an environment tree and all its contents. in-
cluding the checkpointed in-memory state and all persistently stored tuples. from one device to
another 1n one atomuc operation. It 1s eager. agan, because of the weaker connectivity typieally
found n pervastve computing environments.  For a move operation. the rransfer-treet) function
invalidates references from the outside 1nto the onginal environment tree to expose the change in lo-
cation. When sending an event to such a reference. the event ts not transparently redirected through
a forwarding address [35]: instead. the sender 1s notified that the resource has been moved. Invahi-
dating reterences from the outside into the tree 15 unnecessary for a copy operation. as the onginal
tree remains in place. However. because the original tree remains 1n place. the trunsfer-tree() tunc-
uon assigns fresh GUIDs to the environments being commumicated through a copy operation. thus
avoiding duplicates.

The restore-state ) function recreates an environment tree’s in-memory state from a checkpoint
tuple simply by deserializing it. It then notifies all environments in the tree that they have been
restored, moved, or copied. This notification is delivered to each environment’s main event handler
before any other {event handler, event) invocation can be performed. which gives the code runming in
the environment the opportunity to restore access to outside resources before resuming regular event
processing. Because the restored environment tree’s execution context has likely changed. discovery

becomes a central service for reconnecting to outside resources, and. as discussed in Chapter 4.4.
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one.worlds discovery service has been carefully designed to expose an easy-to-program and flexible
interface. Furthermore. we believe that explicitly restoring access to outside resources does not
place an additional burden on developers. as applications running on our architecture already need
to explicitly acquire resources at other points in therr life cycles. such as when they are actuvated.

One important issue in providing checkpointing and migration ts how to control the use of the
two services. This issue 1s especially pressing for migration, as potentally untrusted applications
migrate from one device to another. and environment nesting. which gives an outer environment
complete control over all nested environments. helps address 1t. On the sending side. an outer
environment can use the request/monitor mechanism to intercept a request to be mugrated (that has
been issued by a nested environment) and etther modity 1t or reject it. Simularly. on the receiving
side. the future outer environments are notitied by the rransfer-treer) function that an environment
is about to be migrated to this device. and they can modify the parent environment or reject the
migration altogether. Environment nesting thus provides an etfective mechantsm for limiting how
untrusted applications mugrate across a network.

Environment nesting also enables an important pattern for imitiating checkpointing and migra-
tion. Under this pattern. the logic to decide when to checkpornt and restore an application or when
and where to muigrate an application s factored into its own environment. As a result. the checkpoint-
ing or migration logic can be reused across ditferent applications. thus simplifying the development
of pervasive applications. In fact. this pattern is used by Emcee. one.world's Finder-like application
management utility: As illustrated by the example code in Figure 4.9. 1t leverages the environment
nesting to trivially checkpoint. restore, and move all of a user’s applicatons.

Overall, one.world’s checkpointing and migration services leverage our architecture’s other ser-
vices as much as possible to avoid complexity and to provide a clean and useful model for their
operation. In particular, they rely on the virtual machine to provide a uniform execution environ-
ment across different devices and hardware architectures. They rely on environments to clearly
delineate what state to capture and what state not to capture. They also rely on environments for
controlling migration, both on the sending and the receiving side. and for factoring the checkpoint-
ing and migration logic out of pervasive applications. Furthermore. they rely on the integration of
tuple storage with environments to save checkpoints with an application and to migrate an applica-

tion's data with itself. Next. they rely on asynchronous events to make an application’s execution



operation.handle (new
EnvironmentEvent (null, this, EnvironmentEvent . CHECK_POINT,
env.getId(;));

operation.hardle(new RestoreRequest(null, this, env.getId(s, -1)};

MoveReguest ({null, user, user.env.getnIdl}),
"sio: "elocations" User", falsel):

operation.handlie (new
(n

Figure 4.9: Code examples for checkpointing. restoring. and moving an environment. The first code
snippet checkpoints a user’s environment env. The second code smippet restores the latest check-
point for a user’s environment erv. The third code snippet moves a user’s environment user . env
to the device named Locat:orn. Forall smippets. the operation forwards the event to one.world’s
kernel. which then performs the requested environment operation. Note that the first argument to
cach event's constructor 1s the source for that event and 1s automatically tilled 1n by the operation.
The code smippets are taken from Emcee’s source code.

state explicit. They also rely on asynchronous events to noufy the application of a completed restore.
move. or copy operation, thus exposing the application’s changed execution context. Finally. they
rely on discovery so that an application can easily adapt to a changed execution context by restoring
access to the appropriate resources. In other words, by building on the other elements of one.world's
programming model, our architecture’s checkponting and mugration services can provide important

functionality not typically found in traditional operating systems.
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Chapter 5

IMPLEMENTATION

In this chapter, we present one.world’s Java-based implementation. After a short overview. we ex-
plore the more interesung and challenging aspects in detatl. In parucular, we discuss the implemen-
tation of environments as application containers in Chapter 5.1. followed by our vperation hibrary
in Chapter 3.2, discovery and remote event passing in Chapter 5.3. and checkpointing and mugra-
ton 1n Chapter 5.4. We summuarnize the respective implementation challenges and their solutions 1n
Chapter 5.5.

Our implementation of one.world 1s gutded by two constraints. First. the implementation should
be portable. In particular. 1t cannot require modifications to the underlying virtual machine. so
that we can directly build on existing virtual machines. However. to keep the implementation effort
manageable, we do allow for the use of external. platform-native libraries. even though such hibraries
may reduce portability. Note that. 1n contrast. all application code must be virtual machine code and
cannot access platform-native libranes. Second. the implementation should be stable and efficient
enough to support real-world usage 1n pervasive computing environments with several dozen people
and devices—corresponding to shared spaces such as meeting rooms or luboratories. As exemplitied
by the Labscape digital luboratory apphication. which we introduced in Chapter 2.3 and discuss in
detail in Chapter 6.4.2. pervasive computing environments of this scale are sutficient for gaining
actual. everyday user experiences with our architecture. By limiting the targeted scale. we can thus
focus our imitial efforts on producing a stable and correct implementation. with the expectation that
we will revisit scalability issues later on. We present quanutative results. which demonstrate that
our implementation meets this constraint. as part of our experimental evaluation in Chapter 6.

The implementation of one.world currently runs on Windows and Linux PCs. Itis largely wnt-
ten in Java, which provides us with a safe and portable execution platform. We use a small. native
library to generate GUIDs. as they cannot be correctly generated in pure Java. Furthermore, we

use the Berkeley DB [84] to implement relable tuple storage. The Berkeley DB provides a trans-
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actional hashtable on top of an unreliable file system and runs on a large number of operating
systems, including Windows. VxWorks. and most Unix variants. thus ensuring the portability of our
implementation. At the same time. to port one.world to smaller. handheld devices. such as HP's
iPag. we anticipate replacing the Berkeley DB with a more light-weight. in-memory database. be-
cause memory on these devices 1s already persistent. Our implementation currently lacks support
for transactions as part of structured /O (though. the individual structured /O operations are fully
implemented) and for loading code from environments. As a result. applications cannot use trans-
actions to group several structured VO operations into a single. atomic umit, and application code
must be manually distributed across all devices that are expected to run an application. We expect
that adding these features to our implementation will be straightforward. Our implementation does.
however. include library support for bullding GUI-based applications. tor a command line shell.
which 1s accessible both locally and remotely (through the telnet protocol) and thus simplifies the
management of the ditferent devices 1n a pervasive computing environment. and for converting be-
tween files and stored tuples. thus enabling the exchange of data between conventional operating
systems and one.world.

one.world has been released as an open source package and 1s currently at version 0.7.1. The
implementation has approximately 19,000 non-commenting source statements (NCSS). Our entire
source tree. including regression tests. benchmarks. and applications. has approximately 40.000
NCSS or 109.000 lines of well-documented code. representing an overall development effort of
about s1x man vears. A Java archive tile with the binanes for one.worfd wself 1s 514 KB. The GUID
generation library requires 28 KB on Windows and 14 KB on Linux systems. while the Berkeley
DB libraries require another 500 KB on Windows and 791 KB on Linux systems.

Our implementation does not rely on features that are unique to Java. It requires a type-safe
execution environment, support for reflection and object serialization, the ability to control how ap-
plications use threads. and the ability to customize the code loading process. As a result. one.world
could also be implemented on other platforms that provide these features. such as Microsoft’s com-

mon language runtime [104].



5.1 Environments as Application Containers

As described in the previous chapter. applications in one.world execute asynchronously and in 150-
lation from each other. They can only interact with each other through asynchronous events and
may only reference event handlers implemented by other environments. never arbutrary objects.
The challenge 1n providing asynchrony and isolation s to implement these features on a platform.
the Java virtual machine. that provides neither: Java 1s based on a synchronous execution model.
favoring mulu-threaded code. and does not 1solate objects belonging to different apphcations.

While several projects have explored how to provide erther asynchrony or 1solation for Java.
none provide both at the same ume. Notably. SEDA [114] implements asynchrony by separating
application code mto so-called stages that have their own event queues and thread pools to pro-
cess enqueued events. But SEDA does not provide isolation between stages (a non-goal for SEDA.
which 1s targeted at bullding scalable Internet services). Furthermore, 1t exposes the event pro-
cessing machinery to application developers. requiring that events be exphaitly enqueued in the
appropriate queues and thus making 1t unnecessarly hard to wrte asynchronous code. [n contrast.
KatteOS (7] does provide 1solatton for apphications runming on the same virtual machine. However.
while KaffeOS builds on nested class loaders [68] to 1solate the code of ditferent applications. it sull
requires extensive moditications to the underlying virtual machine and. as a result. 15 not portable.
Furthermore. while KaffeOS does allow for objects to be shared between applications. tts reltance
on explicitly configured. shared heaps exposes a somewhat awkward programming model that more
closely resembles shared memory in traditional operating systems than the capability-based shar-
ing model of Java and other extensible systems such as SPIN [9]. Finally. by using proxy objects.
which. comparable to RPC stubs [12]. mediate access to objects in different protection domains. the
J-Kernel [111] does provide isolation without requiring modifications to the Java virtual machine.
However. because. by default, it relies on Java senalization to copy data between applications. it has
a relatively high overhead.

Our solution to implementing asynchrony and isolation is based on the realization that. by lever-
aging our architecture’s uniform event handling interface and tuple-based data model. we can com-
bine elements from all three systems discussed above while also avoiding their limitations. More

specifically, as in SEDA, our implementation of asynchrony is based on event queues and thread



pools. Similarly. as in KaffeOS. our implementation of solation 1s based on nested class loaders.
However. because of our architecture’s uniform event handling interface. we do not need to force
developers to explicitly enqueue events in the appropriate event queues or to exphcitly create heaps
for sharing data. Rather. as in the J-Kernel. we use dynamically created proxy objects [96] that.
comparable to RPC stubs. mediate access to event handlers m different environments.  Because
these proxy objects are event handlers themselves. which reference the onginal event handlers, we
call them wrapped event handlers. The wrapped event handlers automaucally enqueue events into
the appropriate queues and. because of our archnecture’s tuple-based data model. copy events be-
tween protection domains without falling back on Juva senalizaton. By combiming event queues
and thread pools, class loaders. and event handler wrapping. our implementation cleanly layers asyn-
chrony and isolation on top of a virtual machine that supports neither. However, just hke SEDA. our
implementation requires the ability to control how apphications create and use threads. and. just hke
KaffeOS. our implementation requires the ability to customize the code loading process. We now
describe the three implementation techniques in detail.

At the most basic. each environment processes events independently from other environments by
using its own queue of pending event handler, event - invocations and the corresponding thread pool
to process the queue. Since (a)synchrony and concurrency are orthogonal concerns. the thread pool
can erther be tixed to a single thread (thus disallowing concurrency). or it can dynamically grow and
shrnink with load by using a thread pool controller. similar to the one used by SEDA. This way. an
environment’s thread pool adjusts to the actual load and consumes only as many threads (a himited
resource for most operating systems) as actually necessary. up to a predetermined hmit. Whether the
thread pool 1s fixed to a single thread depends on the components instantiated n the environment.
Each component declares whether 1t is concurrency-safe or not. It at least one component 1s not
concurrency-safe, the environment's thread pool 1s fixed to a single thread: otherwise. 1t grows and
shrinks with load.

one.world's thread pool controller resembles SEDA’s controller as following. Each dynamucally
sized pool has a minimum and a maximum number of threads. To dynamucally shrink a pool. the
threads 1n the pool observe themselves. If a thread is idle for longer than a predetermined duration
and there are more threads than the minimum number, the thread terminates itself. To dynamically

grow a pool. we rely on a controller thread. The controller thread periodically scans all queues of



pending ‘event handler, event' nvocations. If a queue is more than half tull. the controller adds
more threads to the corresponding thread pool. Unlike SEDA. whose event queues are of unlimited
length. our architecture’s queues of pending 'event handler. event: invocations are of a fixed length
(and we thus rely on a relative threshold instead of an absolute number of enqueued events to trigger
the addition of threads). We believe that a fixed queue length better ensures a fair distribution of
device resources between environments. [n particular. a heavily overloaded environment cannot
consume all avanlable memory for its queue of pending evenr handler. evenr nvocations.

In contrast to application environments. which all share the same thread pool contiguration pa-
rameters. one.world's kernel relies on a dynamucally sized thread pool with a larger mimimum and
maximum number of threads. As the kernel provides services shared by all applications. we can
reasonably expect it to encounter a larger load and to thus require additional resources for pro-
cessing events. Furthermore. because TCP effectively establishes a synchronous hink between two
devices. structured IO networking uses an addiional. internal queue and thread pool tfixed to a
single thread) for each TCP connection. This way. an unresponsive device or slow network connec-
tion cannot back up the entire kernel. Rather. the internal queue of pending “event handler. evenr’
invocations for that TCP connection will fill, and applications sending tuples will be noutied that
the communications channel 1s overloaded.

Nested class loaders are used to separate the code ot applications in different protection domains.
They are arranged 1n a simple hierarchy. with one root class loader having a child class loader for
every application’s protection domain, similar to the class loader hierarchy in KatfeOS. The root
class loader is responsible for loading core classes. including one.world’s kernel. and 1s created on
startup. Child class loaders load applications’ code. but defer to the root class loader for Java's
platform classes and one.world’s core classes. Since child class loaders isolate code in ditferent
protection domains. their lifetimes are dependent on the applications” lifeumes. They are created
when an application is loaded into an environment or when it migrates to a device. and they are
destroyed when the application’s environment is destroyed or when the application moves to another
device. As a result, core classes are shared between protection domains and loaded once. and
application code only needs to be in memory while an application is running.

Event handler wrapping ensures that events are automatically placed into the approprate

{event handler, evenr) queue and that arbitrary object references cannot be leaked between pro-
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tection domains. The 1dea behind event handler wrapping is that an application cannot directly
reference an event handler oniginating from another environment. but only a proxy object mediating
access to the oniginal event handler. It is comparable to the use of stubs in RPC systems or the use of
proxy objects in the J-Kernel. An application imtially accesses event handlers in other environments
by hnking with event handlers exported by components tn other environments. such as its environ-
ment's request handler. which 1s implemented by the root environment. The linker performs the
event handler wrapping as part of the linking process. Any additional wrapping ts then performed
by the wrapped event handlers themselves.

A wrapped event handler keeps internal references to the oniginal. unwrapped event handler. the
unwrapped event handler’s environment—which we call the target environment because 1t receives
events. and the environment using the wrapped handler—which we call the source environment
because 1t sends events. When an event 1s sent to a wrapped event handler. the wrapped event
handler tirst ensures that all event handlers referenced by the event are correctly wrapped. By using
the tuple accessor methods shown in Figure 4.1 on page 31, 1t traverses all fields of the event.
including the fields of nested tuples. and modities event handlers in pluce as necessary. If the
protection domarns of the source and target environments differ, the wrapped event handler then
copies the event. Events whose classes were loaded by the root class loader are simply copied.
because their code 1s shared between all protection domains. Events whose classes were louded by a
child class loader are recreated using the class toader of the target environment’s protection domain,
because their code ts not shared between protection domarns. If the source environment is destroyed.
the events’ code 1s still accessible in the target environment’s protection domain, thus preserving the
1solation between the different protection domains. Because tuples are highly structured and tuple
tield types are limited. the event copy and recreation code can avoid using Java senalization; instead.
it traverses the event and directly copies basic types. such as numbers and strings, and employs
reflection to recreate arrays and nested tuples. After wrapping and. if necessary. copying the event.
the wrapped event handler enqueues the unwrapped event handler and the resulting event in the
target environment’s (event handler. event) queue. It the target environment's {event handler. event’
queue is full, it instead enqueues a failure notification in the source environment's (¢event handler,
event; queue (hence the internal reference to the source environment).

Copying events and wrapping event handlers is sufficient to prevent protection domain leaks



because tuples and event handlers are the only entities applications can define themselves. All
other types that can be used 1n tuples are detined by our architecture and cannot reference arbitrary
objects. Note that wrapping event handlers in place before copying events does not represent a
security hole. As descnibed above. our implementation tirst wraps ail event handlers reterenced
by an event in place. replacing the unwrapped versions with the corresponding wrapped ones. and
only then copies the event. A malicious application. 1n a different execution thread. muight thus
change back an already wrapped event handler to an unwrapped one and consequently leak a direct
event handler reference to a ditterent protection domain. However. the event copy and recreation
code only copies references to wrapped event handlers. but never unwrapped event handlers. thus
avoirding this securnity hole.

Taken together. event queues and thread pools. nested class loaders. and event handler wrapping
rsolate environments from each other and provide a well-detined method for asynchronously com-
municating between them. By building on our architecture’s umtorm event handler interface and
tuple-based data model. our implementation automates the copying and enqueueing of events and
consequently exposes a clean and simple event-based programming intertace to developers. Further-
more. it does not require moditications to the Java virtual machine and s completely portable, while
also avoiding the relauvely high overhead of Java senalization. In other words. our implementation
provides both asynchrony and 1solation on top of a virtual machine that provides neither. while also

avoiding the major himutauons of SEDA. KaffeOS. and the J-Kernel.

5.2 Reliable Event Exchanges through Operations

As described in Chapter 4.3, event delivery in one.world has only at-most-once semantics. In par-
ticular, the requesvymonitor mechanism may stlently drop an event when both the source and target
environment's event queues are full. Furthermore, as in other distributed systems. a remote re-
ceiver may fail before receiving the original request or before returning a response. Our reliance on
asvnchrony thus raises the question of how to reliably communicate through events. Traditionally.
distributed systems have emploved transactions [30. 71] to provide failure detection and recovery.
However. because transactions also provide solation and durability, they are too general and, as

a result. too heavy-weight. As described in Chapter 4.3.2. the operation library provides a more
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targeted and consequently more light-weight alternauve for reliably communicaung through events:
It matches each request with exactly one response and automatically detects timeouts and performs
retries. The challenge in implementing the operation library is to support all common event ex-
change patterns. including local and remote event exchanges as well as both sides for multi-round
interactions.

Our solution ts based on the realization that. because events are exchanged through a umform
event handler interface and because a request’s closure 1s returned with the corresponding response.
we can easily interpose on all interactions and rely on event closures tor marking and tracking event
exchanges. For regular event exchanges. we employ a techmque we call closure replacement. under
which the application-supplied closure for the request 1s replaced with the operation hbrary’s own
closure and. before returning the corresponding response to the application. restored in the response.
More spectfically. the operation library replaces a request’s closure with its own closure. simply a
GUID. and stores the corresponding state. including the ongmal closure. the staring ume of the
event exchange. and the number of retries left. 1n an nternal table. keyed by that GUID. It also
replaces the request’s source event handler with 1its own source. When 1t recetves a response on
that event handler. it uses the response’s closure to access the corresponding state in its table and
restores the onginal closure before forwarding the response to the application. For remote events
(which are used to perform send operations as shown in Figure 4.8 on page 45). the implementation
also replaces the closure of the nested event (the msg event i the sample code). This 1s neces-
sary because a response from the remote receiver will contain the nested closure while a failure
notfication created during event delivery will contain the closure of the remote event.

To detect timeouts. the operation library periodically scans its table for expired requestresponse
interactions. For efficiency reasons, scans traverse the table entries along a doubly-linked [ist that
is ordered by timeout. They are triggered by a single. periodic timer. While this results in a foss of
timeout precision, 1t also is considerably more scalable than using a timer for each requestresponse
tnteraction. If a requestresponse interaction has expired. the operation library either retries the
request or, after all retries have been unsuccessful. notifies the appropriate application logic of the
timeout.

Closure replacement by operations not only forms the basis for tracking event exchanges, it

also provides applications with additional flexibility when compared to event exchanges that are
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Figure 5.1: Illustration of Emcee’s tetcher protocol. The verucal arrows indicate the low ot ume
for the two protocol participants. The slanted arrows indicate the four messages exchanged by the
fetcher and fetchee. This protocol 18 used by Emcee to fetch all of a user’s applications from a
remote device (the fetchee) to the current device (the fetcher). At its core, it represents a simple
challenge/response interchange.

not managed by operations. Without operations, an apphication may only use event closures that
also have valid tuple field types. Furthermore. since closures are visible to the events™ receivers but
typically hold state that is internal to an application and needed for processing responses. closures
may leak sensitive application data. Closure replacement through operations avoids both limitations.
because an application-supplied closure is immediately replaced by the operation’s own closure. As
a result, the application-supplied closure is never tested for compliance with valid tuple field types—
as compliance testing is only performed when copying events in a wrapped event handler—and
never leaves the application’s protection domain. The implementation of Emcee. for example. relies
on this feature of our operation library to use arbitrary objects as event closures, which simphties
Emcee’s event processing logic.

However, closure replacement breaks down when operations are used on both sides of mult:-

round interactions because the operations are not nested within each other. To illustrate the problem
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with closure replacement for multi-round interactions. consider the fetcher protocol illustrated n
Figure 5.1. which is used by Emcee to tetch all of a user’s applications. After the fetcher announces
its 1ntent to fetch a user’s applicattons through the “Come here!™ message. the protocol authenticates
the user through a stmple challenge/response interaction. The fetchee issues a challenge in the “I
challenge you!" message. and the fetcher returns a new value computed from the challenge and
a shared secret (the user’s password) 1n the “T accept the challenge™ message. thus authenucating
the user. The “Comung..." message concludes the protocol by contirming a vahd response. The
fetcher’s implementation of this protocol uses an operation to send the “Come here!™ and the ~1
accept the challenge™ messages. and the fetchee’s implementation uses an operation to send the 1
challenge you'™ message. However. even if the fetchee correctly copies the closure from the "Come
here!” message into the I challenge you!™ message. its use of the operation hibrary results in the
closure being replaced and the fetcher's operation never seeing its own closure. As a result. the
protocol umes out and never completes.

To address this problem. the operation library supports a special type of closure. called a chain-
ing closure. A chaming closure 15 a tuple with no addimonal tields besides the ID and metadata fields
common to all tuples. The contract is that when the oniginal closure of a request 15 a charing clo-
sure (or a subtype). the operation library does not replace the closure. Rather. it passes the provided
closure through and tracks the request/response iteraction based on the ID of the chaining closure.
As a result, applications can implement multi-round interactions while sull relytng on operations to
detect timeouts and perform retries on both sides. In the above example. the fetcher creates a new
chaiming closure for the "Come here!”™ message. which s then passed from message to message
(hence the name) and never replaced.

By using closures to mark and track event exchanges, our implementation of the operation li-
brary reliably manages requestresponse interactions. [t matches each request with exactly one
response and automatically detects timeouts and performs retries. thus simplifying the development
of event-based applications. However. because closures are visible to the application developer. the
use of the operation library also requires some developer discipline. Notably. depending on the type
of event exchange managed by the operation library. a developer may use any closure—for regular
event exchanges—or must use chaining closures—for multi-round interactions. Furthermore. when

implementing service functionality. a developer must ensure that the request’s closure is copied into
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the response: though. one.world’s library support for implementing event handlers does this au-
tomatically. Overall. in our experience with using the operation library. the advantages of having

reliable event exchanges far outweigh the discipline required in using the library.

5.3 Discovery and Remote Event Passing

As described in Chapter 4.4, discovery and remote event passing provide the ability to locate re-
sources and send events to them. The single most important requirement for implemenung the two
services 1s that discovery be almost always avarlable. After all. if discovery 1s not avarlable. apph-
catons cannot locate necessary resources and thus cannot adapt to changes in their runtime context.
Our implementation relies on a centralized server. which holds the discovery directory and. to en-
sure availabihity, 1s automatically elected from all devices runming one.world on the local network.
Discovery server elections eliminate the need for manual configuration and administration and thus
make it possible to use discovery outside well-managed computing environments. such as a con-
ference site. With discovery server elections, the conference attendees can exchange contacts and
collaborate on presentations, simply by enabling their devices™ wireless capabilities.

The challenge 1 implementing discovery server elections 1s that they must be called early and
complete quickly. so that discovery adjusts swiftly to changes in device and network topology.
As a result. we cannot rely on traditionai consensus algorithms. Notably, the Paxos algonthm. an
opumal algerithm for reaching consensus in asynchronous aetworks (61, 62]. requires answers trom
a magonity of participants and may thus introduce considerable delays. Furthermore. Paxos already
requires an clected leader. exactly what we are trying to implement. Our solution 15 based on the
realization that pervasive applications do not require consensus on which discovery server to use:
they only require that the server actually used has the complete discovery directory. In other words.
we can implement elections so that they are called early and complete quickly, even though this may
lead to inconsistencies. as long as we also make discovery tolerate such inconsistencies.

However, before discussing our implementation of discovery in detail, we first review the imple-
mentation of remote event passing. as discovery builds on REP. To provide point-to-point commu-
nications. REP relies on a table mapping the GUIDs and names encapsulated by symbolic handlers

to actual event handlers. Mappings are added through the exporr operation and removed when the



corresponding leases are canceled or expire. To send an event through pont-to-point communica-
tions. REP forwards the event to the device specified by the symbolic handler. where the GUID or
name is resolved to an event handler by performing a table lookup. and the event 1s delivered to that
event handler. The implementation uses structured /O networking to communicate events between
devices. across either UDP or TCP. REP defaults to TCP. but senders can overnde this default when
sending an event. The choice of UDP or TCP affects the reliability and timeliness of event dehiv-
ery between devices. but has no other applicaton-vistble effect. For TCP-based communications.
REP maintains a cache of connections to avoid recreating connections. Furthermore. sending events
across the network is avorded altogether 1f the sender and the recenver are on the same device [8].

Discovery 1s implemented on top of REP’s point-to-point communications and 1s sphtinto three
components: a discovery chient. which services all applications running on a device. a discosery
server. which holds the discovery directory. and an election manager. which ensures that the discov-
ery server 1s avatlable. Consistent with their roles. the discovery chient and election manager run
on every device. while the server usually runs on only one device for a local network. In summary.
elections are called aggressively and terminate after a fixed time period. which ensures that a dis-
covery server 1s almost always avaitable but can also lead to more than one elected discovery server
(though. never none). To tolerate such inconsistencies, the discovery directory held by the server
15 treated as soft state. Only clients hold the authonitative state. which they torward to all visible
servers. However, when servicing discovery requests. they only consult one visible server.

In detadl. the discovery client is responsible for maintaining the ‘event handler. descriptor: bind-
tngs for all applications running on a device and thus holds the authoritative version of that state.
Additionally. it is responsible for forwarding discovery requests to the discovery server. To maintain
discovery bindings. the discovery chient uses an internal table. Just as for point-to-point communica-
tions, bindings are added through the export operation and removed when the corresponding leases
are canceled or expire. When a discovery server becomes visible on the local network, the discov-
ery client propagates all bindings to the server, thus ensuring that every server on the local network
sees the device's bindings. Server-side bindings are leased and the discovery client maintains these
internal leases. To forward discovery requests. the discovery client simply sends the requests to one
of the currently visible servers.

The discovery server is responsible for actually servicing discovery requests. It accepts the



event handler, descriptor’ bindings propagated by discovery clients and integrates them into a
single table for all applications on the local network. which. 1n contrast to the clients™ tables. is soft
state. Descriptors that are identical. 1gnonng tuple IDs and metadata. are collapsed into a single
table entry pointing to multuple remote references to improve the pertormance of query processing.
When processing a resolve operanon. the discovery server looks up matching services and returns
the result to the discovery chent that forwarded the operation. When processing a late binding send
operation (which. as descnibed 1n Chapter 4.4. combines a discovery lookup with the routing ot an
event into a single operation). the discovery server first processes observing reverse lookups on the
event and torwards the event to all matching services. It then processes forward lookups on the
resource descriptors as well as consuming reverse lookups on the event and torwards the event to
one matching service for anycast and o all matching services for mulucast. For both operations. 1f
no service matches, a faillure nottication 1s retlected back to the sending application.

The election manager 1s responsible for ensuring that a discovery server 1s present on the local
network. The current discovery server penodically announces its presence. every second 1in our im-
plementation. Announcements are sent as UDP mulucasts through structured [/O networking. The
election manager listens for discovery server announcements. If 1t does not recerve announcements
for two announcement periods. 1t calls an election. thus allowing for one but not more consecutively
lost announcements. During an election. each device broadeasts a score representing the device’s
suttability for hosting the discovery server. In our implementation. this score is computed from a
device's uptime and memory size. as buth statistics are readily available within Java and. taken to-
gether. favor larger and more stable devices. Obviously. this heunistic should be improved by also
accounting for CPU speed and available network bandwidth, even though they are not as readily
available within Java. During the election. each device also observes the other devices’ broadcasts
and keeps track of the currently highest score. The election is terminated after a fixed period. one
second in our implementation, and the device with the highest score starts the discovery server.

Since each device already tracks the currently highest score. our implementation includes an
optimization, under which a device only broadcasts its score if it is higher than the currently highest
score. Consequently, the cost of electing a discovery server on a network with n devices is at most
n + | broadcast messages, one message to start the election and at most one message per device to

announce its score. This cost is small, as long as the cost of sending a broadcast message is com-



parable to the cost of sending a unicast message—which is the case for most local area networking
technologies. including Ethernet for wired networks and 802.11 [38] for wireless networks. How-
ever. the cost of sending broadcast messages also limuts the number of devices that can participate
in an election. as at most n+ 1 messages need to fit into an election period. [f more devices try
to participate in an election, a new discovery server will still be elected: though. it may not be the
device with the highest score. as that device may not have an opportunity to broadcast its score.

To reduce the period during which discovery may be unavailable. our implementation includes
additional optimizations. under which the discovery clientand server proactively call elections with-
out waiting for two missed server announcements. In particular. the discovery clientcalls an election
when 1t receives a maltormed or unexpected event indicating that the current discovery has failed.
Furthermore. the current discovery server calls an election when its device 1s about to be shut down.

Overall. the discovery service can be in one of three states. depending on how many discovery

servers are currently running within the network:

No discovery server. This 1s an exceptional state. under which discovery 1 temporanly unavail-
able. This state can be reached when the device runming the server crashes or when the
network becomes partitioned. After two missed announcements. the election manager on one
of the remaining devices initiates an clection and a new discovery server is started. So. after a
maximum period of three seconds—two missed announcements. each one second apart. and
an electuon one second long, at least one discovery server 1s running again on the network.
Clients see the announcements from the new discovery server and forward their bindings to

the server. No discovery state is lost. because the discovery server’s table 1s only soft state.

One discovery server. This is the normal state. and discovery works as expected. The current
server adds new ‘event handler. descriptor) bindings to its table. removes expired bindings.
and processes requests as they are forwarded by clients. A device entering the local network
sees the current server’s announcement within one second. forwards all current bindings to

the server. and thus becomes part of the local network.

More than one discovery servers. This is an exceptional state. though discovery s fully available.

This state can be reached when two network partitions are merged. or when messages are



lost during an election and two devices start a discovery server. It 15 also entered when the
discovery server proactively calls an election as its device 1s shut down. Discovery remains
fully available. because clients export their ‘event handler. descriptor: bindings to all visible
servers but forward requests to only one server. When a discovery server sees an announce:-
ment from another server with a higher score (which usually happens within one second). the

server with the lower score shuts itself down and the network returns to the normal state.

Our server-based implementation of discovery 1s largely transparent to applications. Only a
server crash or a network partition result in a short transitional period. during which discovery is
effectively unavailable as discovery lookups do not return any results—after all. there 1s no discovery
directory. This transitional period could usually be hidden by using more than one discovery server
in the normal case. Note that modifying the implementation to utlize more than one server in the
normal case represents a relatively simple change. because discovery chients already work with more
than one server. Further note that using more than one server can also improve the scalability of our
discovery service by load balancing requests across several servers.

By relying on an elected discovery server. our implementation of one.world’s discovery service
ensures that discovery 1s almost always available. Elections are catled aggressively and. in contrast
to consensus algorithms which require answers from a majonty of participants. complete after a
fixed period. Elections may thus result 1n a less than optumal selection—when the device with the
highest score did not have an opportunity to broadcast its score—or even to more than one elected
server—w hen broadcasts where not seen by all devices. To tolerate such inconsistencies. a server’s
state 1s treated as soft state, and clients. which hold the authoritative version. forward their state to
all visible servers. Though, they forward requests to only one visible server. Our implementation
is limited by the cost of sending broadcast messages. as. on a network with n devices. at most n + 1

messages need to tit into an election period.

5.4 Checkpointing and Migration

one.world’s checkpointing and migration services are novel in that they leverage our architecture’s
environment hierarchy to limit the state that is checkpointed and migrated. respectively: an appli-

cation’s components and data are preserved while references to resources outside the tree are not.
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This design provides application developers with a simple and well-detined model tor what state
ts affected by the two services. It also marks a new and. we believe. reasonable trade-off between
service features and implementation complexity. In particular. visibly erasing outside references not
only avoids much of the complexity of transparent migration systems, such as Sprite {28} or Emer-
ald [56. 98]. but also enables our services to operate under weak or intermittent connectivity—when
migrating from one device to another. the two devices only need to be connected while the move
or copy operation 1s 1n progress. Furthermore. besides erasing outside references. our migration
service migrates an application’s entire state. including 1ts execution state and persistent data. thus
providing more functionality than most agent systems. such as IBM's Aglets [63]. which only mi-
grate an application’s objects but not its execution state nor persistent data. We provide a detarled
companson with other migration systems in Chapter 8. In this section. we describe how our archi-
tecture captures and restores the in-memory state of an environment tree and then present how the
checkpoinung and migranon services build on this shared functionality.

At the core of checkpointing and migration lies the ability to capture and restore the in-memory
state of an environment tree. The challenge in implementing this shared functionality 1s to preserve
the state of the entire tree, even if the tree spans several protection domains. while also erasing
references to outside resources. By companison. previous migration systems either move one pro-
cess. and therefore one protection domain, at a tme—as 1s the case for Sprite—or do not provide
isolation at all—as 1s the case for Emerald and Aglets. Furthermore. as noted above, Aglets does
not even migrate an application’s execution state. Our implementation meets this challenge through
two techniques: it inspects wrapped event handlers to determine which references to null out and
annotates Java classes with their class loader to preserve protection domains. Our implementation
directly builds on the implementation of environments as application containers (as described in
Chapter 5.1) and. consequently, does not require any additional mechanism. In other words. by
implementing protection on top of the virtual machine, captuning the state of several protection do-
matins in one consistent checkpoint becomes manageable. Similarly. by implementing asynchrony
through explicit event queues and thread pools. capturing the applications” execution state becomes
feasible.

When capturing the in-memory state of an environment tree, our implementation first quiesces

all environments in the tree, so that it can capture a consistent snapshot. In particular. it lets all cur-
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rently active event handler invocations run to completion and prevents new invocations from being
executed. Once the environment tree is quiesced. our implementation serializes each environment’s
main and monitor handlers as well as ‘event handler, evenr; queue. Duning senalization, our imple-
mentation inspects every wrapped handler and nulls out those handlers whose target environment
is not in the environment tree. thus preserving references between environments in the tree but not
to environments outside the tree. Note that our implementation does senalize request handlers be-
longing to environments in the tree (even though therr target environment 1s the root environment).
so that applications can still commumicate with the kernel and the outside world after restoration or
the checkpoint. Furthermore, Java classes are annotated with thetr protection domarn. that is. class
toader. When deserializing a Java class. the class can then be loaded by the appropriate class loader.

thus preserving the protection domains 1n the environment tree. Once senalization is complete. the

r

environment tree 18 reactivated. The resulting checkpoint is represented as a CheckPoint tuple,
which contains the serialized application state. the idenutiers for the environments in the check-
pornt. and a timestamp. When restoring a checkpoint. our implementation simply desenializes the
apphication state contained in the CheckPoint tuple. enqueucs an appropriate nottfication at the
beginning of each environment's event handler. event' queue. and then reactivates the environments
in the tree.

The implementation of checkpointing uses structured I/O to read and write ChecxPoint tu-
ples. After creatng a checkpoint. 1t writes the checkpoint to the root of the checkpointed envi-
ronment tree by using a structured VO pur operation. The checkpoint thus becomes a part of the
application and. for example, 1s moved with the application when the application 1s migrated. When
restoring a checkpoint, our implementation can either restore a checkpoint with a specific time-
stamp or the latest checkpoint. A specific checkpoint is read using a structured VO read operation
that queries for a CheckPoint tuple with the specitied imestamp. The latest checkpoint is read by
using a structured /O query operation and then iterating over all CheckPoint tuples to determine
the latest checkpoint.

The implementation of migration relies on a network protocol to communicate the migrating
environment tree. including the environments’ metadata. stored tuples, and in-memory state (as rep-
resented by the previously generated CheckPoint tuple). from one device to another. The protocol

is implemented using our architecture’s remote events and is organized into several rounds, where
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cach event issued by the sender 1s contirmed by the receiver. thus providing a very simple form of
flow control. Both sender and receiver use operations to manage the event interchanges. employing
aChainingClosure as described in Chapter 5.2. The sender’s operation connects each request
to its response. while the receiver’s operation connects each response to the next request. If an event
1s lost or an error occurs., the protocol and consequently the migration are aborted. The protocol 1s
described in detail in Appendix A.

Our implementation does not yet migrate program binarnes. that is. the applications’” Java class
data. Rather. Java classes are loaded from a device’s local classpath and not migrated. In contrast.
one.world's design calls for storing class data as tuples in an application’s environment and then
migrating the class data with the applicaton. However. we believe that this design may be too
simplistic. as class data shared between applications 1s stored several umes and may be repeatedly
migrated. We thus suggest an improved design that stull stores class data as tuples in individual
environments but also backs class data by a shared cache. effectuvely stonng each class only once.
With the improved design. class data 1s only migrated if the necessary classes are not already in the
cache.

The complexity of one.world’s migration service. as measured by 1ts code size. 1s quite reason-
able. With approximately 1.600 statements. 1t amounts to only 8% of the overall kernel sources. In
particular. the code for checkpointing and the migration protocol compnises about 1200 statements
out of about 2500 statements for all environment operations. The code for migrating stored tuples
comprises an additional 300 statements out of about 2000 statements tor all tuple storage opera-
tions. Furthermore. we incur some cost for making all core objects seralizable. typically less than
10 relauvely formulaic statements per class. At the same ume. one.world’s support tor migration.
Just as for previous migration systems, does tnteract with several aspects of our architecture’s ker-
nel. resulting in five tightly interdependent classes at the core of one.worid. Note that application
classes also need to be serializable; though, making them senalizable is typically easier than for
one.world’s core objects. requinng no or very little additional code 1n the common case.

By building on our implementation of asynchrony and isolation, the implementation of
one.world’s checkpointing and migration services can directly capture an environment tree’s state
while also erasing references to outside resources. As a result. and in contrast to previous migration

systems, our implementation can easily checkpoint and migrate several protection domains in one
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operation. Furthermore. in contrast to many mobile agent systems. it can easily capture the envi-
ronment tree’s execution state. However. because execution stacks are implicitly provided by the
underlying virtual machine. it can only capture the execution state of pending - event handler. event
invocations, but not currently executing ones. Captuning the state of currently executing -evenr

handler. event' invocations would require modifications to the virtual machine.

5.5 Summary

In this chapter. we provided an overview ot one.world’s implementation and then discussed 1ty
more 1nteresting aspects 1 detarl. As summanzed in Table 5.1, each of the previous four sections
presented a particular implementation challenge and the corresponding solution. In particular. to
provide asynchrony and 1solation on top of the Java virtual machine. our implementation uses event
queues and thread pools. nested class loaders. and event handler wrapping. To provide rehable event
delivery on top of unrehable events. our implementation interposes on chients” interactions with out-
stde services and relies on closure replacement and chaiming closures to track these interactions. To
ensure the availability of discovery without running 4 traditional consensus algonthm, our imple-
mentation relies on an elected discovery server that holds only soft state. Elections are called early
and complete within a fixed time period. Discovery clients tolerate any resulting inconsistencies
by exporting bindings to all servers while forwarding requests to only one server. Finally. to create
a checkpoint that preserves the structure of an environment tree while also erasing outside refer-
ences. our implementation inspects wrapped event handlers, only nulling out those implemented by
environments outside the tree. and annotates classes with their protection domains, thus making it

possible to load them with the appropriate class loader while restoring the checkpoint.
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Chapter 6

EXPERIMENTAL EVALUATION

In this chapter. we introduce the user-space services. utihties, and applications we and others have
butlt and present the results of our experimental evaluation. which 1s based on these programs.
The goal 1s to answer the question of whether one.world is good enough tor building pervasive
applications.  Or. to be more in line with the hypothesis presented in Chapter 1. we are trying
to determine whether focusing on the unique requirements of pervasive computing has resulted
tn a system architecture that enables developers to effectively build adaptable applications so that
users do not have to constantly recontigure their systems. However. both questions. by themselves.
are rather general and hard to answer. Accordingly. we rely on four. more specific criteria and

corresponding questions to evaluate our architecture:

Completeness. Can we build useful programs using one.world’s pnmitives? This enterion deter-
mines whether our architecture 1s sutticiently powerful and extensible to support interesting

user-space programs. including additional services and utthties akin to the Unix shell.

Complexity. How hard is it to write code 1n one.worfd? This criterion determines the ettort in-
volved in developing programs for our architecture. We are espectally interested in how

making applications adaptable impacts programmer productivity.

Performance. [s system performance acceptable? This criterion determines whether our architec-
ture performs well enough to support actual application workloads. Since our goal is to make
applications adaptable. we are especially interested in whether applications respond quickly

to changes in their runtime context.

Utility. Have we enabled others to be successtul? This criterion determines whether others can

build real pervasive applications on top of one.world. It also represents the most important



criterion. After all. a system architecture 1s only as usetul as the programs running on top of

1t

We address these four criterta in the rest of this chapter. one criterion per section, and ntroduce
the user-space programs we and others built for our architecture along the way. presentung our
own programs in Chapter 6.1 and the programs others built in Chapter 6.4. To summanze the
results. we show that one.world (1) is sufficiently complete to support interesting programs on top
of it. (2) 1s not signiticantly harder to program than with conventional programmung styles. (31 has
acceptable performance. with applications reacting quickly to changes 1n their runtime context. and.
most importantly. (4) enables others to successfully build pervasive applications. In other words. our
experimental results show that one.world does. in fact. enable developers to build applications that
adapt to change instead of forcing users to constantly reconfigure their systems and. consequently.

they confirm the hypothests behind this dissertation.

6.1 Completeness

To evaluate our architecture, including to determine completeness. we built a set of user-space pro-
grams. In this section, we first descnibe their functionahty and implementations and highlight how
they utilize one.world's services. In particular. we present a replication service i Chapter 6.1.1.
followed by Emcee—our user and applicatton management utihty—as well as Chat—our text and
audio messaging application—in Chapter 6.1.2. We then discuss the results regarding completeness

in Chapter 6.1.3.

6.1.1 Replication Service

To provide ubiquitous access to people’s information. pervasive applications need to access the
corresponding data items, even if several people share the same data and access it from different and
possibly disconnected devices. One important strategy for providing this capability 1s to replicate the
data. Our replication service does just that and makes stored tuples accessible on muluple devices
that may be disconnected. By providing replication as a common application building block. our
replication service simplifies the development of pervasive applications. as developers need not

reimplement this important, but also complex capability.
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Figure 6.1: Illustration of our replication service's structure. The replicator environment intercepts
all storage operations 1ssued by the application. In disconnected mode. the replicator logs updates
in the log environment. In connected mode. 1t directly forwards them to the master.

Our rephication service 1s patterned atter Gray et al.’s two-tier replication model [41]. A master
node owns all data and replicas have copies of that data. Replicas can either be connected or discon-
nected. In connected mode. updates are tinal and performed directly on the master. In disconnected
mode. updates are tentative and logged on the replica. When a replica becomes connected agan. 1t
synchronizes with the master by replaying its log against the master and by receiving updates from
the master. The replica may then disconnect again or continue in connected mode.

We chose two-tier replication over Bayou's eptdemuc replication model [88. 102] for two rea-
sons. First. two-tier replication 1s easier to explain to users, as tentative updates may only change
once. during synchromization. and not repeatedly. Relying on an easy-to-explain model tor reph-
cation 1s tmportant, because pervasive computing is expressly targeted at supporting all people and
not just computer experts. Second. on a more technical level. two-tier replication avoids system
delusion [41]. Delusion occurs when large numbers of replicas reconcile with each other repeatedly
tn the absence of a master and consequently diverge further and further from each other.

The implementation of our replication service runs in user-space and. as illustrated in Figure 6.1.
exploits the environment nesting—through the request/monitor mechanism—to interpose on an ap-
plication’s access to tuple storage. The replicator logs updates in the log environment when in
disconnected mode and forwards them to the master when in connected mode. On reconnection of
a disconnected device, instead of sending individual updates as remote events, the log is sent to the

master in one operation by copying the log environment. Similarly, updates are sent from the master
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Figure 6.2: A screenshot of Emeee’s user interface. The main window hists the users whose appli-
cations run on the device. A popup menu for each user. shown tor the user numed robert. 1s used to
perform most operations. such as runnming a new application or checkpointing a user’s applications.
The user menu supports the creation of new users and the fetching of a user’s apphcations trom
another device.

to the replica by migrating an environment containing such updates.

As tllustrated by our replication service. mugration can serve as an internal building block tor
apphications and can be used to simplity communications. Furthermore. because environments host
both computations and data. migration provides an etfective way to move application-specific rec-
oncihation logic t the master: the replicator simply instantiates the necessary components 1n the
log environment before copying 1it. Finally. our replication service is not imited to using migration
internally: rather. the master and its replicas are migratable themselves. Migrating the master 1s
useful when, for example. upgrading the computer the master 15 running on: migrating a replica is

useful when the user is switching devices.

6.1.2 FEmcee and Chat

Emcee. whose user intertace ts shown in Figure 6.2, manages users and their applicatons. Itincludes
support for creating new users. running applications for a user. and checkpointing all of a user’s
applications. Emcee also provides the ability to move or copy applications between users. simply

by dragging an application’s flag icon. as shown in the upper right corner of Figure 6.3 on page 76.
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and dropping it onto a user’s name in the main window. Finally. it supports moving all of a user’s
applications between devices and thus helps realize the vision of a computing environment. in which
applications follow a user as she moves through the physical world. Applications can erther be
pushed from the current device to another device. or they can be pulled from another device to
the current device. Emcee can manage any one.world application: an application does not need to
implement any features specific to Emcee. However. to support drag and drop through the flag 1con.
an application’s developer needs to add three lines of code to the application.

The implementation of Emcee structures the environment hierarchy according to the pattern
‘User ‘<user>:/<appl:icazion>. Emcee runs in the /User environment and uses a child
environment for each user and a grandehild for each appheation. Each user’s root environment stores
that user’s preferences. including her password. and application checkpoints. The implementation of
most operations 1s straight-forward. since they directly utilize one.world’s primitives (as illustrated
in Figure 4.9 on page 50). The exception is tetching a user’s applications from a remote device.
As already discussed in Chapter 5.2, 1t uses a two-round protocol to authenticate the user to the
remote nstance of Emcee that is currently hostung the user’s applications. After the user has been
successtully authenucated. the remote Emeee imtiates a migration of the user’s environment tree to
the requesting device. If the user’s location 1s not specitied. the imtial remote event for the fetcher
protocol is routed through late binding discovery. Otherwise. it 1s sent directly to the remote device
see Figure 4.8 on page 45).

Chat. whose user interface s shown in Figure 6.3, provides text and audio messaging. [t s based
on a simple model. under which users send text and audio messages to a channel and subscnbe to
a channel to see and hear the messages sent to it. The implementation sends all messages through
fate binding discovery. using TCP-based communications for text messages and UDP-based com-
munications for audio messages. For each subscnbed channel. Chat exports an event handler to
discovery. which then receives the corresponding messages. Audio can either be streamed from a
microphone or from sound tuples stored in an environment. Since music tiles tend to be large. they
are converted into a sequence of audio tuples when they are imported into one.world. Using the
tuple IDs as symbolic references. the sequence of audio tuples forms a doubly-linked list. As Chat
is streaming audio messages. it traverses this list and reads individual tuples on demand. buftening

one second of audio data in memory.
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Figure 6.3: A screenshot of Chat's user interface. The user interface 1s divided into four panels.
which can be independently expanded or collapsed by checking or unchecking the corresponding
checkbox. The listen panel shows received text messages and provides volume controls for audio
plavback. The send message panel lets the user send text messages and the send audio panel lets the
user send audio. either from a microphone or from stored audio tuples. Finally. the subscribe panel
lets the user select the channels he or she 1s currently listening to.

Emcee and Chat illustrate the power of migration combined with dynamic composition through
discovery and environment nesting. Discovery connects applications in the face of migration. Be-
cause Chat uses late binding discovery to route text and audio messages, messages are correctly
delivered to all subscribed users even if the users move through the physical world. At the same
time. environment nesting makes it possible to easily migrate applications. such as Chat. that have
no migration logic of their own. Emcee controls the location of a user’s applications simply by
nesting the applications in its environment. Chat does not need its own migration logic and can
automatically benefit from future improvements in Emcee’s migration support. such as using smart

badges to identify a user’s location instead of requiring the user to explicitly move and fetch appli-
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cations.

6.1.3 Discussion

The above programs tand the applications presented later on in this chapter) clearly show that our
architecture 1s powertul enough to support a variety of useful programs. Furthermore. our replica-
tion service and Emcee. both of which directly help in realizing the vision of ubiquitous access to
a person’s data and applications. demonstrate that services and utilities can indeed be implemented
in user-space. The key feature for enabling user-space services and utihiies s one.world’s envi-
ronment hierarchy. Nested environments make 1t easy to control other programs and. through the
request/monitor mechamsm. to interpose on their request streams. However. as discussed in Chap-
akin to previous work on stackable tile systems [48].

Furthermore. 1n the course of developing the above programs. we did encounter one relatively
minor limitation to one.world’s APls: the performance evaluation of our replication service {44}
suggests that the durability guarantees of structured VO storage can result in too high a overhead
for some applications. In particular. immediately forcing each pur operation to disk 1s unnecessary
when logging updates in disconnected mode. because all updates are already tentative. We thus
designed (but not yet implemented) a simple extension to structured /O, under which applications
can optionally request that the destructive put and delete operations provide only relaxed durabihity
guarantees and are lazily written to disk. Just as with traditional tile system interfaces. applications

using this option need to explicitly pertorm a flush operation to force pending updates to disk.

6.2 Complexity

To evaluate the effort involved in writing adaptable applications, we analyzed the process of imple-
menting Emcee and Chat. The general theme for developing Emcee and Chat was that “no applica-
tion is an island”. Consistent with a computing environment where people and devices keep coming
and going. applications need to assume that their runtime context changes quite frequently and that
external resources are not static. Furthermore, they need to assume that thetr runtime context may

be changed by other applications. These assumptions have a subtle but noticeable effect on the



78

implementations of Emcee and Chat. Rather than asserting complete control over the environments
nested in the / User environment. Emcee dynamically scans its children every second and updates
the hst of users in its main window accordingly. Similarly. 1t scans a user’s environments before dis-
playing the corresponding popup menu (which 1s displayed by selecting the “Environments™ menu
entry shown in Figure 6.2).

For Chat, these assumptions show up throughout the implementation. with Chat venfying that
its internal configuration state 1s consistent with its runtime context. Most importantly. Chat verities
that the user. that 1s. the parent environment’s name. 1s still the same after activation. restoration
from a checkpoint, and migrauon. If the user has changed. it updates the user name displayed inats
title bar. adjusts default channel subscriptions. and clears its history of text messages. Furthermore.
it runs without audio 1f 1t cannot inittalize the audio subsystem. but retains the corresponding con-
tiguration state so that st can resume playback when migraung to a different device. Italso silences
a channel f the audio tuples have been deleted from their environment. Finally. before processing
any event. including text and audio messages. 1t checks for concurrent termination.

In our expenience with Chat and Emcee. programmung for change has certainly been tractable.
The implementation aspects presented above are important for Emeee’s and Chat's correct opera-
ton. but are not overly complex. Furthermore. programming for change can also simphfy an ap-
plication’s implementation. For example. when Emcee fetches a user’s apphications. it needs some
way to detect that the user’s applications have arrived on the local device. But. because Emeee al-
ready scans its children every second. the arrival will be automatically detected during a scan and no
additional mechanism is necessary. To put it differently, the initial etfort in implementing an adapt-
able mechanism—dynamically scanning environments—has more than paid off by simplifying the
implementation of an additional application feature—fetching a user’s applications.

To quantify the effort involved in building Emcee and Chat. we tracked the ume spent devel-
oping the two programs. They were implemented by three developers over a three month period.
During that time, we also added new features to one.world’s implementation and debugged and pro-
tiled the architecture. Overall. implementing Emcee and Chat took 256 hours: a breakdown of this
overall time 1s shown in Table 6.1. Learning Juva APIs is the time spent for learning how to use
Java platform APIs. notably the JavaSound API utilized by Chat. User interface is the ume spent

for implementing Emcee’s and Chat’s GUL. Logic is the time spent for implementing the actual



Table 6.1: Breakdown of development times in hours for Emcee and Chat. The times shown are
the result of three developers implementing the two applications over a three month pertod. The
activities are discussed in the text.

Activity Time
Learning Java APIs 210
User interface 475
Logic 123.5
Refactoring 6.0
Debugging and profiling 58.0
Total time 256.0

application functionality. Refactoring 1s the tme spent for transitioning both applications to newly
added one.world support for building GUI-based applications. It does not include the ime spent
for implementing that support 1n our architecture. as that code 1s reusable (and has been reused) by
other apphications. Finally. debugging and profiling 1s the ume spent for tinding and fixing bugs in
the two applications and for tuning their performance.

Since Emcee and Chat have 4.231 non-commentng source statements (NCSS). our overall pro-
ductivity is 16.5 NCSS/hour.! As discussed above, one.world 1s effective at making programming
for change tractable. In fact. adding audio messaging. not reacting to changes n the runtime context.
represented the biggest challenge duning the implementation effort. in part because we first had to
learn how to use the JavaSound APIL. We spent 125 hours for approximately 1750 NCSS. resulting in
an approximate productivity of 14 NCSS/hour. If we subtract the ime spent learning Java platform
APIs (including the JavaSound API). working around bugs in the Java platform. and refactoring our
implementation from the total time. our overall productivity increases to 20.4 NCSS/hour. which
represents an optimistic estimate of future productivity. Our actual productivity of 16.5 NCSS/hour
lies at the lower end of the results reported for considerably smaller and simpler projects [92]. but
is almost twice as large as the long-term results reported for a commercial company [32]. Based on
this. we extrapolate that programming for change does not decrease overall programmer productiv-

ity and conclude that it 1s not signiticantly harder than more contentional programming styles.

'"Productivity 15 traditionally measured in lines of code per hour or LOC/hour. NCSS/hour ditters from LOC/hour i
that 1t 1s more exact and 1gnores. for example, a brace appeanng on a line by itself. As a result. NCSS/hour can be
treated as a conservative approximation for LOC/hour



6.3 Performance

To determine whether our implementation performs well enough for real application usage. we mea-
sured the scalability of mugration and late binding discovery. Migration and discovery are the two
services the programs discussed in this chapter rely on the most and. m general. are indispensable
for realizing applications that follow people through the physical world. Furthermore. to character-
1ze system and application reactivity, we explored how Chat reacts to changes 1n 1ts runtime context.
Reactvity is especially important for pervasive applications. as they need to continuously adapt to
a highly dynamic computing environment. It also marks a clear point of departure from traditional
distnibuted applications such as Microsoft’s Outlook. which locks up for minutes when 1t cannot
reach the corresponding Exchange server.

All measurements reported on 1n this chapter were performed using Dell Dimension 4100 PCs,
with Pentium [II 800 MHz processors, 256 MB of RAM, and 45 or 60 GB 7.200 RPM Ulra
ATA/100 disks. The PCs are connected by a 100 Mb switched Ethernet. We use Sun’s HotSpot
chent virtual machine 1.3.1 runming under Windows 2000 and Sleepycat’s Berkeley DB 3.2.9.

To quantfy the scalability of migration. we conducted a set of micro-benchmarks.  For the
micro-benchmarks. we use a small application that moves atself across a set of devices 10 a tght
loop. We measure the application circhng 25 umes around three PCs for each expeniment. To test
the scatability of migration under ditterent loads. we add an increasing number of tuples carrying
100 bytes of data, tuples carrving 100.000 bytes of data. and copies of our Chat application n
separate sets of experiments.

The results show that migration latency increases linearly with the number of stored tuples or
copies of Chat. We measure a throughput of 12.6 KB/second for tuples carrying 100 bytes of data.
16.2 KB/second for copies of Chat., and 1.557 KB/second for tuples carrying 100,000 bytes of data.
In the best case (tuples carrying 100,000 bytes). migration utilizes 12% of the theoretically available
bandwidth and is limited by how fast stored tuples can be moved from one PC to the other. Since
moving a stored tuple requires reading the tuple from disk. sending it across the network. writing
it to disk. and confirming its amval, a better performing migration protocol than the one described
in Appendix A should optimistically stream tuples and thus overlap the individual steps instead of

moving one tuple per protocol round.
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Figure 6.4: Discovery server throughput under an increasing number of recervers. Throughput s
measured as the number of audio messages leaving the discovery server. The results shown are the
average of 30 measurements, with error bars indicating the standard deviation. Each audio message
carries 8 KB of audio data.

To quantify the scalability of late binding discovery. we stream audio messages between a vary-
ing number of Chat applications. We chose to measure streaming audio. because messages are large
(see below) and must be delivered on time, thus exercising our implementation of the discovery
service. Figures 6.4 and 6.5 show the discovery server throughput under an increasing number of
receivers for a single sender and an increasing number of senders for a single receiver. respecuively.
Throughput 1s measured as audio messages leaving the discovery server. and the results shown are
the average of 30 measurements. Each audio message carries 8 KB of uncompressed audio data
at CD sampling rate, which corresponds to 10.118 bytes on the wire when forwarding from the
sending node to the discovery server and 9.829 bytes when forwarding trom the discovery server to
the receiving node. The difference in on-the-wire sizes stems largely trom the fact that messages
forwarded to the discovery server contain the late binding query. while messages torwarded from
the discovery server do not. The receivers and senders respectively run on four PCs; we use Emcee’s

support for copying applications via drag and drop to spawn new ones.
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Figure 6.5: Discovery server throughput under an increasing number of senders. As in Figure 6.4,
throughput 1s measured as the number of audio messages leaving the discovery server. The results
shown are the average of 30 measurements. with error bars indicating the standard deviation. Each
audio message carries 8 KB of audio data.

When increasing the number of receivers. discovery server throughput increases almost linearly
with the number of receivers. However, when increasing the number of senders. discovery server
throughput levels off at about 10 senders and shghtly degrades thereafter. At 10 senders. the PC
running the discovery server becomes CPU bound. While the cost of processing discovery queries
remains low, the cost of processing UDP packets and senializing and deseriahzing audio messages
comes to dominate that PC’s performance.

Figure 6.6 illustrates system and application reactivity by showing the audio messages received
by Chat as its runtime context changes. As for the discovery server throughput experiments. each
audio message carries 8 KB of uncompressed audio data at CD sampling rate. Unlike the migration
latency experiments, Chat is managed by Emcee and runs within its user’s environment. At point
1., Chat is subscribed to an audio channel and starts receiving audio messages shortly thereafter. At
point 2, Chat is moved to a different device and does not receive audio messages for 3.7 seconds

while it migrates. reinitializes audio, and reregisters with discovery. After it has been migrated
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Figure 6.6: Audio messages received by Chat 1n a changing runume environment. Chatis subscribed
to an audio channel at point 1. It 1s then moved to a different node at point 2. The node hosting
the discovery server 1s shut down gracefully at point 3 and forcibly crashed at point 4. The audio
channel 1s unsubscribed at point 5.

and 1ts recerving event handler has been reexported to discovery. 1t starts receving audio messages
again. The PC runming the discovery server is gracefully shut down at point 3. Since one.world
proactively calls a discovery server election. the stream of audio messages 1s not interrupted. By
contrast. at point 4. the PC running the discovery server is forcibly crashed. The stream of audio
messages is interrupted for 2.3 seconds until 4 new discosery server is elected and Chat's receving
event handler 1s forwarded to the new discovery server. This peniod is governed by detecting the
crashed discovery server. which requires two missed server announcements or 2 seconds. Finally.
at point 5. Chat is unsubscribed from the audio channel and stops receiving audio messages shortly
thereafter.

Overall, our performance evaluation shows that service interruptions due to mugration or forced
discovery server elections last only a few seconds. which compares favorably with Microsott’s Out-
look hanging for several minutes. Furthermore. while migration latency generally depends on the

number and size of stored tuples. it takes only 7 seconds for an environment storing 8 MB of audio



84

data. which 1s fast enough when compared to a person moving through the physical world. Finally.
our architecture performs well enough to support several independent streams of uncompressed au-
dio data at CD samphing rate. However. our evaluation also suggests that discovery server scalability
1s limited. Adding a secondary discovery server. as already suggested in Chapter 5.3. could improve
the scalabulity of our discovery service and would also eliminate service interruption due to forced

server elections.

6.4  Utility

To determuine unlity, we used one.world as the basis for student projects in our course on butlding
distributed and pervasive applications and supported the Labscape project 1n porting their digital
laboratory assistant to our architecture. We now discuss these applications, presenting the course

projects first and Labscape second.

6.4.1 Building Distributed and Pervasive Applications

Relauvely early tn our implementation etfort (corresponding to releases 0.1 through 0.4 of our ar-
chitecture) we conducted an expennmental comparison of one.world with other distributed systems
technologies by teaching a semior-level capstone design course. The nine students in the class sphit
1nto two teams that each implemented a distributed application. Each team. 1n turn, spht into two
subteams. with one subteam using existing Java-based technologies and the other using one.world.
Since both subteams implemented the same application. this experiment lets us compare our ar-
chitecture with other approaches to building distributed systems. To document the design and
implementation process and to compare the different application versions. each team produced a
web-based diary. a design report, and a final report. Students also attended weekly meetings with
the instructors and gave final presentations about their work. Finally. another researcher. Vibha
Sazawal, conducted end-of-term interviews with the students. focusing her questions on software
engineering issues. The results reported here are based on the teams” documentation and end-of-
term tnterviews.

The first team developed a music sharing system. which relies on a dynamically configured hi-

erarchy of directory nodes to organize searches. The Java subteam implemented the application



in plain Java. without using additional technologies. Results for the music shanng team are in-
complete; students barely completed the implementations. although they did demonstrate working
applications. The students’ experiences suggest that our architecture’s support for quenes as part of
structured I/O and for asynchronous messaging through REP ciearly simplified the implementation
on top of one.world. In contrast. the Java subteam had to implement querying and asynchronous
messaging from scratch.

The second team developed a universal inbox. which integrates a home network of future smart
appliances. such as an intelligent fridge. with email access from outside the network. thus making
1t possible. for example. to control one’s apphances while travehing. The umiversal inbox lets users
access human-readable email. routes control messages to and from appliances. and provides a com-
mon data repository for emal and apphance contiguration state. The goal was to build a reliable
application that gracefully reacts to changes in the runtime environment. such as a computer crash.
The Java version uses Jint [5] for service contiguration and T Spaces [116] for stonng repository
data.

The students” experiences support our argument from Chapter 2 that extending programming
models for single-node applications to distributed systems makes 1t difficult to build adaptable ap-
phcations. Jini relies on Java RMI to access remote resources and 1s designed to simplity the conver-
ston of existing code into Jini services. The Java subteam exploited this and onginally implemented
individual services. such as the message router or data repository. as stand-alone. single-node ap-
plications. Students subsequently “jinitied” the applications and iteratively retined them as network
services. While the conversion of an application into a bare-bones Jini service ts simple. turning
a mummal Jini service into a tull-blown Jini service s an arduous process. This retinement pro-
cess involved repeatedly testing the system to identify potential failure conditions and then adding
code to account for such conditions. Students also had to work around the synchronous design of
RMI. While Jini includes support for remote events. they are implemented as synchronous invo-
cations through RMI and thus expose services to possibly indefinite delays, for example, because
the service receiving an event is buggy and hangs. The completed implementation still reflects the
difficulties of the refinement process and has relatively few services, with each of these services
representing a single point of failure for all users.

In contrast, it appears that the one.world subteam did not encounter similar difficulties in build-
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ing their version. Rather. local tuple storage and late binding seem to have simplified the one.world
version. More specifically. their implementation avoids a centralized data reposttory and. by build-
ing on local tuple storage. separates each user’s emal management into an independently running
service. The individual services communicate with each other through late binding discovery. thus
masking their current location as well as transient fatlures. As a result. the implementation runming

on our architecture 1s more resilient to failures and more adaptable.

6.4.2  Labscupe

We now return to the Labscape digital biology laboratory assistant. which we introduced 1n Chap-
ter 2.3. Remember that the goal 1s to seamlessly capture. orgamze. and present biology processes in
order to help biologists pertorm reproducible experiments. The Labscape application tries to achieve
this goal by having an expertmental guide follow a rescarcher from touchscreen to touchscreen as
she moves through the laboratory. The constraints are that ¢ 1) the Labscape developers are program-
mers and not system builders. and (2) the resulting application has to be good enough to be used by
real biologists every day. In other words. the Labscape application has to be responsive, stable. and
robust. The application needs to react quickly to changes n its execution context. and it needs to
be continuously available. Furthermore. when a fatlure occurs. its etfects should be locahized and it
should be easy to recover.

The Labscape team actuaily created three ditferent implementations of their digitai taboratory
assistant.  The first version centralizes all processing and relies on remote windowing through
VNC [93] to display the individual guides on a laboratory’s touchscreens. In the Labscape team’s
experience. the first version is neither responsive nor robust. While a different remote windowing
system, such as X Windows [82]. might have alleviated the performance concerns. it would not have
eliminated the central point of failure. Furthermore. the first version's reliance on remote window-
ing precludes more advanced features, such as a researcher reviewing her work while commuting
homewards and being disconnected from the digital laboratory.

The second version of Labscape uses distributed processing; code and data follow the researchers
through the laboratory by migrating from touchscreen to touchscreen. The Labscape team imple-

mented the second version directly in Java, using TCP sockets for communications and their own.
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application-specitic migration layer to move the guides. In their experience. the second version is
neither stable nor robust. thus prompting the Labscape team to port their application to one.world.
This third version of Labscape has the same basic structure as the second version. However. 1t re-
lies on our architecture’s late binding discovery for communications and the migration service for
moving guides between touchscreens. The resulting application 1s responsive, stable. and robust.

The structure of the second and third versions 1s illustrated 1n Figure 6.7. The individual appli-
cation services work as following. The device access service collects expenmental data from RFID
and barcode scanners and location updates from IR sensors. [t converts the data and the updates into
the appropriate events and then forwards them to the proximiry service. which tracks researchers’
locations. For expenimental data. the proximity service determines the researcher that performed the
scanning operation and. 1n turn, forwards the data to the researcher’s guide. For location updates.
the proximity service updates its internal data structures and then advises the researcher’s guide to
move to the closest touchscreen. The WebDAV service 1s used to publish experimental data on the
World Wide Web. Finally. the state service serves as the tinal repository for all expenimental data,
which it receives from the researchers” guides.

Porting to one.world resulted in three major benetits over the Java version. First. it reduced the
development time from nine to four man months. In part. the reduced development time stems from
the fact that the Labscape team did not have to redesign their apphcation and could reuse existing
code. as our architecture rematns neutral on an applicatton’s structuring (as stupulated in Chapter 3).
Second. porting simplified code maintenance and improved performance. In the Java version. every
major modification of the guide requires corresponding changes in the migration layer. Yet. despite
the application-specific migration layer, moving a guide in the Java version 1s five to ten times
slower than in the one.world version. In [6]. the Labscape team reports that migration latencies for
the one.world version are between 2.5 seconds for moving a guide with no experimental data and
7.1 seconds for moving a guide with 64 samples. representing a large experiment. These results are
consistent with our own measurements, as reported above. and are acceptable when compared to a
researcher moving through the laboratory—while migration latencies around a minute are not.

Finally. porting considerably improved application uptime and resilience to failures. The Java
version has 2 mean time between failures (MTBF) of 30 minutes, compared to an order of days

for the one.world version. The short MTBF of the Java version stems from a lack of appropriate
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system support as well as from buggy apphcation code. Porting to one.world can eliminate the first
cause but not the second cause. At the same ume. system support can help with graceful failure
recovery. In particular. after a fuilure of the Java version. the enrire digital laboratory has to be
restarted. In contrast. by building on late binding discovery nstead of direct TCP connections. the
one.world version allows for a precemeal restarting of application services and thus 1s considerably
more restlient in the face of buggy application code.

Once more. the Labscape application illustrates the power of combining one.worfd’s migration
with late binding discovery. As programs move from one device to another. they easily communicate
with each other by routing events through the discovery service. At the same ume. Labscape’s

use of migranon differs from the other programs discussed 1n this chapter. Unlike the replication

service—which uses migration as an internal building block—and Emcee—which controls how

other applications are migrated. the guides in Labscape migrate themselves. Given this versatility of
migration. we believe 1t to be a general burlding block for system services. utihities. and appheations
alike.

To improve thetr application’s resilience to farlures. the Labscape team plans to turther exploit
one.world's features. In particular. they intend to replicate the proximity service. which currently
represents a single point of fatlure. The corresponding code changes are simple. as they only re-
quire changing event delivery from anycast to multicast and 1gnoning duplicate events in the gurdes.
Furthermore, the Labscape team plans to add support for disconnected operation to the guides. Cur-
rently. the guides require that the state service be contunuously availuble. so that they can directly
forward updates. Support for disconnected operation can easily be added by logging pending up-
dates in local wple storage and forwarding them once the state service becomes avatlable again.

Overall. the Labscape application demonstrates that one.world provides a solid platform for
building and running real pervasive applications. However, the Labscape team did encounter three
limitations of our architecture. First. in the Labscape team’s experience. one.world events are harder
to program than. for example, Java Swing events. In particular, they would like to write more
concise event code and see better support for managing asynchronous interactions (in addition to
our operation library). The students implementing the universal inbox for our course on building
distributed and pervasive applications also voiced similar concerns. Second. one.world has its own

data model based on tuples and its own network communications in the form of REP and discovery.
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As a result. it is unnecessarily hard to interact with legacy and web systems. We revisit both issues
in more detail in the next chapter.

Finally. due to secunity constraints enforced by our architecture. the Labscape team had ditfi-
culties 1n reusing existing. third-party Java hbranes. More specifically. our architecture prevents
applications from accessing Java's java . lang. System class and makes select methods. notably
arraycopy () tocopy the contents of arrays and gecProperty () to access system propertes.
accessible through its own one.world.uzil.SystemUtilitcies class. Using a different
class to access these methods does not represent a restriction for applications written from scratch:
developers simply use a different class name in the source code. However. 1t does prevent existing
Java libranies, which frequently employ these methods. from running on one.world. To address this
1ssue. we developed a simple utility that. through binary rewnting. transforms existing hibranes and

replaces invocations to Syster’s methods with the corresponding one.world methods.
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Chapter 7

DISCUSSION AND FUTURE WORK

As shown in the previous chapter. the user-space programs we and others built provide us with a
solid basts for evaluating one.world's design and implementation. The process of developing and
using these programs also helped us gain a better understanding of the strengths and hmtations
of our architecture and 1ts implementation. In this chapter. we focus on the resuluing insights and
identity lessons that are applicable beyond our work as weil as opportunities for future research into
svstemn support for pervasive applications.

The user-space programs presented in Chapter 6 make extensive use of one.world’s services and
illustrate the power of a design that follows the three requirements of change. ad hoc composition.

and pervasive sharing:

Embrace contextual change. Event-based nottication cleanly exposes change to applications. For
example. the Labscape application uses events to expose location changes to a researcher’s
guide. enabling that guide to move to a close-by touchscreen. Furthermore. Chat relies on

events to automatically adjust uts configuration when the user owning the application changes.

Encourage ad hoc composition. Environment nesting and discovery make 1t casy to dynamically
compose functionality. For example. Emcee relies on environment nesting to control a user’s
applications. and both our debugger and replication service use the request/monitor mecha-
nism to interpose on an application’s request stream. Furthermore. Emcee. Chat. the universal
inbox. and the Labscape application all rely on discovery to connect different application in-
stances or services. Moreover, discovery not only simplifies communications in the face of
migrating applications—as is the case for Chat—but also increases applications’ resilience to

failures—as illustrated by Labscape.

Recognize sharing as a default. Tuples simplify the capturing and searching of information. For



example. the Labscape application directly encodes experimental data as tuples. and our stu-
dents’ music shaning system directly builds on our query language to locate appropnate songs.
Furthermore. the separation of data—1n the form of tuples—and functionality —in the form of
components. provides considerable flexibility when compared to systems that combine data
and functionality in objects. For instance. we can add music to a running Chat application.
simply by importing the corresponding files into Chat's environment. Conversely. we can
improve existing audio capabtlities by instantiating the corresponding components in Chat's
environment. Yet. while upgrading the applicaton. we do not need to change stored audio

tuples.

Additonally, migration and remote event passing provide powertul pnmitives that cover the spec-
trum between collocation and remote interaction. On one side. we rely on migration to make a user’s
applications avatlable on a close-by device. On the other side. we rely on REP to let applications
communicate with each other.

The central role played by environments 1n our architecture implies. 1n our opinion, a more
general pattern. namely that nesting is a powerful paradigm for controlling and composing appli-
cations. To reiterate. nesting provides control. as tllustrated by Emeee. and nesting can be used to
extend applications. as tHustrated by our replication service. Nesting thus makes 1t possible to easily
factor important and possibly complex behaviors and provide them as common application building
blocks. Furthermore. nesting 1s attractive because 1t preserves the relationships between nested envi-
ronments. For instance. when audio tuples are stored 1n a child environment of Chat’s environment.
the environment with audio tuples remains a child. even if Chat's environment s nested in a user’s
environment and subsequently moved between devices.

While the user-space programs provide ample examples for the power of our architecture, they
also helped in identifying several limitations. We discuss the issues raised by our data model in
Chapter 7.1, followed by event processing in Chapter 7.2, leases in Chapter 7.3, and structured VO's
unified interface to storage and communications in Chapter 7.4. We then discuss user interfaces
in Chapter 7.5 and the interaction between one.world and the outside world in Chapter 7.6. We

conclude this chapter with an outlook on future research directions in Chapter 7.7.



7.1 Data Model

The biggest himitation of our architecture 1s that, to access a tuple. a component also needs to have
access to the tuple's class. This does not typically pose a problem for applications. which have
access to their own classes. However. it does pose a problem for services. such as discovery. that
process many different types of data for many different applications. One solution. which we have
not yet implemented. uses a generic tuple class. say StaticTuple. to provide access to the tields
of different classes of tuples by using the accessor methods shown in Figure 4.1 on page 31. When
passing a tuple across protection domains or when sending 1t across the network. the system tries
to locate the tuple’s class. If the class can be accessed. the tuple 15 stantiated 1n its native format.
If the class cannot be accessed. the tple 1s instantiated as a Staz:icTuple. In contrast to the
Jynam:cTuple described in Chapter 4.2, whose fields are dynamically added and removed as
well as dynamically typed. a StazicTuple preserves all typing information of a tuple’s original
class. In paruicular. it ensures that tield values conform with the fields” declared types. and 1t does not
support the dynamic addition/removal of fields. This solutton works because services that process
many difterent types of data already use the accessor methods instead of accessing a ple’s ticlds
directly.

A StaticTuple can provide access o a tuple's tields even f the tuple’s class cannot be
accessed. At the same time. 1t cannot capture the semantic constraints expressed by the tuple’s
validare{) method or the human-readable representation expressed by the zoStringf)
method. As a result. 1t represents a workable yet incomplete solution. The fundamental prob-
lem is that we have taken a single-node programming methodology. namely a programmatic data
model. which expresses data schemas in the form of code. and applied it to a distnibuted system.
This suggests that we need to abandon the programmatic data model altogether and instead use a
declarative data model. which expresses schemas as data and not as code. With a declarauve data
model. applications still need to access a data item’s schema in order to manipulate the data item.
However. since the schemas themselves are data and not code. they are easier to inspect program-
matically and not tied to a specific execution platform. As a result. we conclude that declarative
data models provide better interoperability than programmatic data models.

We believe that defining an appropriate declarative data model is an important topic for future
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research into pervasive computing. The challenge 1s to define a data model that meets conflicting
requirements. On one side. te support the pervasive sharing of information. the data model must be
general and supported by a wide range of platforms. One possible starting point is XML Schema [10.
105]. It already defines the data model for SOAP [14]. which is the emerging standard for remote
communications between web services and used. for example. by Microsoft’s NET platform [104].
On the other side. the data model must be easy to program and efficient to use. For an XML-
based data model. this means avoiding the complexities of a general data access interface. such as
DOM [64]. and providing a more efficient encoding. perhaps by using a binary encoding [72] or
by compressing the data [69]. Ideally. a declarauve data model should be as easy to program as
field access for tuples in our architecture. Probably. such a data model will specify a genene data
contarner and a provision for automatically mapping data to application-specitic objects, comparable
to our propused use of StaticTuple.

While tuples are limited by being based on a programmatic data model. the umiform and ubiqui-
tous use of tuples tn our architecture has proven to be very powerful. In particular, it allowed us to
gracefully evolve the discovery service and ntegrate new tunctionality not found in other discovery
systems. The tmual design of our discovery service did not include support for reverse lookups
(as described in Chapter 4.4). However. while implementing Chat. we needed some means for de-
bugging remote communications through late binding discovery. We considered adding a dedicated
interface for debugging discovery. but rejected that option as not general enough. We then con-
verged on reverse lookups as a more flexible technique. Because of our architecture’s uniform use
of tuples. integrating reverse lookups with discovery was easy. Since events are tuples, they can be
treated just like any other data. and reverse lookups on events can be directly expressed as regular
queries. Furthermore, since queries are tuples. we simply added one more option to the export oper-
ation. We thus conclude rthat the uniform use of structured data enables new functionality and helps

to gracefully evolve a svstem.

7.2 Event Processing

Asynchronous events provide a good fit for pervasive applications, as they make changes in an appli-

cation's execution context explicit. However, event-based programs, unlike thread-based programs.
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cannot store relevant state on the stack. thus raising the question of how to maintain the state asso-
ciated with event exchanges. In our experience. two techniques have proven effective. First. we rely
on state objects in event closures to establish relevant context. For example. Emcee already needs to
maintain an internal table of user records. listing. among other things. a user’s name and root envi-
ronment. Emcee includes this user record as the closure for any request sent to an operation (which
immediately replaces that closure as described in Chapter 5.2). The code processing responses can
then determine the approprate context based on the closure returned with the response. Second.
when performing several related operations. we rely on a worklist that 1s maintained by the event
handler receiving responses. e.g.. the cont:inuaz:on event handler in Figure 4.7 on page 41.
Upon recerving a response. the continuation removes the next ttem from the worklist and nitiates
the corresponding operation 1f the worklist has more ttems. or 1t invokes the appropriate logic if the
worklist 1s empty. For instance. after activation. restoration, or migration. Chat uses such a workhist,
with each 1item on the worklist describing a channel. to export an event handler to discovery for
every subscenbed channel.

Several event handlers in the programs described in Chapter 6 need to process many different
types of events or perform different actions for the same type of event depending on the event's
closure. Their implementation requires large if-then-else blocks that use 1nstanceof tests (o
dispatch on the type of event or more general tests to dispatch on the value of the closure. The
result 1> that these event handlers are not very modular and are relatively hard to understand. mod-
ify. or extend—an 1ssue expressly noted by the Labscape team and the students implementing the
universal inbox. This suggests the need for better programming language support to structure event
handlers. Alternatives include dynamic dispatch as provided by MultiJava [24] or pattern matching
as provided by Standard ML [76].

While we sull believe that asynchronous events are an appropriate abstraction for pervasive
computing. our experience with event-based programmung also suggests that, contrary to {85]. asyn-
chronous events are as hard to program as threads. Just like threads, asynchronous events can result
in complex interactions between components. For example. a better performing alternative to the mi-
gration protocol described in Chapter 5.4 and measured in Chapter 6.3 might optimistically stream
tuples rather than waiting for an acknowledgement for each tuple. However. providing flow control

for streamed events can easily replicate the full complexity of TCPs tlow control {99]. Furthermore.
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just as a system can run out of space for new threads. event queues can run out of space for new
events. Finally. asynchronous events are not a panacea and some interactions must be synchronous.
For example. timers to detect lost events must be scheduled synchronously because scheduling them

asynchronously would use the same mechamism whose failure they are meant to detect.

7.3 Leases

As described in Chapter 4.2 and Chapter 4.4, resource access in our architecture 1s leased. Leases
provide an upper bound on the tme resources can be accessed. although leases can sull be revoked
by one.world's kemnel before their exprration. notably when an application s migrated. To make
the use of leases practical. we introduced a lease mantainer library early on in our implementation
effort. The lease mantainer automatically renews the lease it manages unul its exphitly canceled.
While lease maintainers work most of the tume. they can sull fal. allowing a lease to expire pre-
maturely. For example. when a device 1s overloaded. lease renewal events may not be dehivered on
ume. Furthermore. when a device. such as a laptop or handheld computer. 15 hibernating. renewal
events cannot be delivered at all. As a result, applications need to be prepared to reacquire local
resources. such as their environment's tuple storage, even though the resources are guaranteed to be
avatlable. We thus conclude that feases do not work well for controlling local resources. Instead.
we prefer a stmple bind/release protocol. optionatly with callbacks for the forced reclamation of

resources, and use leases only for controlling remote resources.

7.4 A Unified Interface to Storage and Communications

As described in Chapter 4.2.2. we took a cue from Unix and carefully designed structured VO
to expose the same basic interface for storage and communications (though. in contrast to tuple
spaces, structured /O storage and networking are distinct services). However. none of the programs
we and others built actually use structured VO networking: they all rely on remote event passing
and discovery for network communications. Only REP and discovery themselves employ structured
/O networking to implement their services. We believe that developers favor REP and discovery
over structured /O networking for remote communications because the former are higher-level and

more flexible services. As a result. we conclude that we overdesigned structured /O. We could
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have omitted structured I/O networking and instead used a simpler. internal networking layer for
implementing REP and discovery. In other words. storage and communications are orthogonal to

each other and best implemented by separate services with distinct interfaces.

7.5 User Interface

All GUI-based programs running on top of one.world use Java's Swing toolkit [112] to implement
their user interfaces. The integration between Swing's event model and one.world's event model has
worked surprisingly well. When an application needs to react to a Swing event. it generates the cor-
responding one.world event and sends it to the appropriate event handler. Long-lasung operations.
such as fetching a user’s apphcations. are broken up into many difterent one.world events. which are
processed by our architecture’s thread pools. Swing’s event dispatching thread. which executes an
application’s user itertace code. 15 only used for generating the tirst one.world event in a sequence
of one.world events. As a result. applications in our architecture, unlike other applications using
Swing. do not need to spawn separate threads for processing long-lasting operations. In the oppo-
site direction, when an application needs to update the user interface in reaction to a one.world event.
it simply schedules the update through Swing’s SwingUzilic:ies. invorelater () facility.
An important limitation of Swing and other. comparable toolkits 18 that the user interface does
not scale across different devices. For example. we successfully used Emcee and Chat on tablet
computers but would be hard pressed to also run them on. say. handheld computers. However.
an important property of pervasive computing environments is the variety of supported devices tas
illustrated 1n Figure 1.1 on page L.1). While most of these devices rely on screens—albeit con-
siderably smaller ones than those used with PCs—tor output and some pointing device for input.
some devices. such as Sony’s Aibo robotic dog, employ entirely ditferent forms of input and output.
including speech. Consequently. we believe that an important topic for future research into perva-
sive computing is how to implement scalable user interfaces. One promising approach. which 1s
being explored by the user interface markup language (1] (UIML) and the Moazilla project’s XML-
based user interface language [19] (XUL). is to define a declarative specification of an application’s
interface. which is automatically rendered according to a device's input and output capabilities.

An unexpected lesson relating to user interfaces is that GUI-based applications help with the
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testing. debugging. and profiling of a svstem. Once we started using Emcee and Chat. we quickly
discovered several bugs in our architecture that we had not encountered before. The two applications
also helped us with identifying several performance bottlenecks in our implementation. We believe
that this advantage of GUI-based applications stems from the fact that GUIs encourage users to
“play™ with applications. As a result. the system is exercised in different and unexpected ways.
especially when compared to highly structured regression tests and interaction with a command
line shell. Furthermore. 1t is easter to run many GUl-based applications at the same time and.

consequently. to push a system’s limuts.

7.6 Interacting with the Outside World

To provide 1ts functionality, one.world prevents apphcations from using abstractions not defined
by our architecture. By default. applications cannot spawn thetr own threads, access files, or bind
to network sockets. These restrictions are implemented through a Java security policy [39]. As
a result, specitic applications can be granted access to threads. files. and sockets by moditying a
device’s security policy. However. because these abstractions are not supported by our architecture.
applications are fully responsible for their management. ncluding their proper release when an
applicaton 1s migrated or terminated.

Access to sockets is especially important for applicatuons that need to interact with the outside
world. such as Internet services. For example. we have used a modified secunty policy to let a web
server run in our architecture. The web server’s implementation s split into a tront end and a plug-
gable back end. The front end manages TCP connections, translates incoming HTTP requests into
one.world events, and translates the resulting responses back to HTTP responses. [t also translates
between MIME data and tuples by relying on the same conversion framework used for translating
between files and stored tuples. The default back end provides access to tuples stored in nested
environments.

In the opposite direction, it is not currently practical for outside applicauons to communicate
with one.world applications through REP or discovery, especially if the outside applications are
not written in Java. Because of our programmatic data model. an outside application would have

to retmplement large parts of Java's object serialization, which is unnecessarily complex. How-
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ever. to provide ubiquitous information access. pervasive applications must easily interact with each
other. independent of the underlying systems platform. as well as with Internet services. After all.
the Internet is the most successful distributed system. used by millions of people every day. We
believe that moving to a declarative. XML-based data model. as discussed above. and using stan-
dardized communication protocols will help in providing better interoperability between pervasive
applications. even if they run on different system architectures. and with Internet services. To put it
differently. modemn distributed svstems need to be compatible with Internet protocols first and offer

additional capabilities second.

7.7 Outlook

In addition to the work on declarative data models and more modular event handling suggested
above. we see two major thrusts for future research into system support for pervasive applications.
with the first armed at creating more advanced system services and the second aimed at changing
the way we build pervasive applications.

While one.worlds system services meet basic application needs. there are three areas for provid-
ing additional system services. First. we need better support for reflecing an application’s runtime
environment to the application. including an ontology for describing device charactensucs. net-
work connectivity. and location. For example. one.world provides only limited information about
a device’s capabilittes (such as speed and memory capacity) and none about the current level of
connectivity. Yet. remaming energy for battery operated devices and cost tor network connectivity
are important factors when dectding, for example. whether to migrate or to communicate. The main
challenge here is to develop an appropriate ontology and the corresponding software sensors. The
location stack {49] provides an excellent example for how to accomplish this for device and user
locations.

Second. we need better support for synchronizing and streaming data between devices. While
we have experimented with replication (as described in Chapter 6.1.1), our current implementation
is not sutticiently tuned and not fully integrated with other system services. Furthermore. one.world
does not provide any support for dynamically transforming data. for example. to reduce a video

stream’s fidelity when sending it across a low bandwidth cellular link. The main challenge here
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is not how to synchromize data or transform streaming video, but rather how to provide a unitied
framework for both discrete data (such as expenimental data or personal contacts) and streaming
data (such as audio or video).

Third. we need better support for changing and upgrading an application’s code. one.world’s
migration can already be used to easily install an application on a new device by simply copying
it. However. our architecture does not provide the ability to upgrade apphcations while they are
runming. Since many pervasive apphications can be expected to be long running. being able to
upgrade such applications without disrupting them 1s an tmportant capability. The main challenge
here is to design a mechanism that is automatic. secure. and general enough to also upgrade the
system platform itself.

While system support. such as that provided by one.world. can simphty the task of developing
pervasive applications. developers sull need to program all application behaviors by hand. We
believe that a higher-level approach s needed to help developers be more effective.

To this end. we turn to the web for inspiration and observe that it uses two related technologies.
declarative specifications and scripting. to great effect.  For example. web servers typieally rely
on declarative configuration files that specify how to map a server’s vinual name space to actual
resources and how to process and filter content. Simularly. web browsers rely on style sheets to
specity the appearance of accessed web pages. In both cases. more advanced behaviors are typreally
expressed through scripts that are embedded in web pages. As already mentioned. Mozilla’s XUL
pushes these two technologies even further and relies on them to express an application’s entire user
interface.

Based on our experiences with one.world. which suggest that application-specitic policies can
be directly implemented on top of our architecture’s services, we believe that a similar approach
can be applied to the development of pervasive applications. For example. this approach can be
used to specify policies for migrating pervasive applications or data integrity constraints for repl-
cated storage. The key insight is that a declarative specification can provide a concise description
of a system’s properties. which can then automatically be translated into appropriate actions. This
approach thus represents a push towards specifying a system’s goals instead of programming its
behaviors. In effect. it treats a pervasive systems platform, such as one.world. as the assembly lan-

guage for implementing complex behaviors. As such. it holds the potential to significantly simplify
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the development of complex systems.
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Chapter 8

RELATED WORK

one.world incorporates several technologies that have been successtully used by other systems. The
main ditference 1s that our architecture integrates these technologies into a simple and comprehen-
sive framework. with the goal of enabling applications to adapt to an ever changing computing
environment. Furthermore, where necessary. our architecture does introduce new services. Most
importantly, our environment service 1s unique 1n that it combines persistent storage and the man-
agement of computations into a single. hierarchical structure. Other nnovations tnclude our remote
event passing and discovery services. which expose an mtegrated API that covers the spectrum of
network communications options. our migratton service. which makes migration in the wide area
practical. and our operation hibrary. which eftectuvely manages asynchronous interactions. In this
chapter. we highlight relevant systems and discuss their differences when compared to one.world.
Note that we have already reviewed systems that adapt transparently 1n Chapter 2.2.

The environment service was inspired by the ambient calculus [20]. Simular to environments,
ambients are containers tfor data. tunctionahity. and other ambients. resulting in a hierarchical strue-
turing. Unlike environments. which are used to implement pervasive applications, ambients are
an abstraction 1n a formal calculus and are used to reason about mobile computauons. The Mo-
bileSpaces agent system [95] also relies on a hierarchical structuring. where agents can be embed-
ded within other agents. Like environments. MobileSpaces agents are migrated together with ali
nested agents. Unlike environments. MobileSpaces agents provide only limited isolation (an outer
agent can directly access the objects of an inner agent). cannot interpose on the request stream of
inner agents (as provided in one.world through the request/monitor mechanism). and do not include
persistent storage.

Asynchronous events have been used across a wide spectrum of systems, including networked
sensors [50}, embedded systems [23]. user interfaces [89. 112]. and large-scale servers [42, 86, [14].

Out of these systems, one.world’s support for asynchronous events closely mirrors that of DDS [42]



and SEDA [114]. As a result. it took the author of this dissertauon a very short ume to reimple-
ment SEDA's thread pool controllers in one.world. Our architecture also provides three important
improvements over these two systems. First. in DDS and SEDA. the event passing machinery 1s
exposed to application developers. and events need to be explicitly enqueued in the appropriate
event queues. In contrast. one.world automates event passing through the use of wrapped event
handlers. Second. DDS and SEDA have no facihues for 1solating the different stages. which map
to environments in our architecture. from each other. In contrast. our architecture. by combining
elements from KaffeOS [7] and the J-Kernel [111] while also avoiding those systems’ limitations,
does provide 1solation between environments. Third. DDS and SEDA lack support for structuring
event-based applications beyond breaking them into stages. While stages represent a signiticant
advance when compared to prior event-based systems, operations in one.world provide addittonal
structure for event-based applications and simphify the task of wrniting asynchronous code.

Odyssey [81] relies on asynchronous notitications to expose contextual change to apphications. It
ts based on a client/server model. where applications™ access to services 1s mediated by the Odyssey
runtime. Under this model. applications specity allowable tidelity ranges tor the services they use.
The runtime. tn turn, relies on type-specific components to map these fidelity ranges to actual re-
sources, for example. to select an appropriate resolution tor streaming video. When a service cannot
be provided within the requested fidelity range. for example. because of insutticient network band-
width, the Odyssey runtime notifies the application through an upeall. thus allowing the application
to select a different fidelity range. Odyssey’s use of asynchronous upcalls for exposing contextual
change i1s comparable to our architecture’s use of events. However, Odyssey has been designed as
a minimal extension to a traditional operating system (NetBSD). As a result. it 1s tar less flexible
tn specifying what resources to access (it only supports tile names) and in noutying applications of
contextual change (it only supports a single upcall with three simple parameters). Furthermore, it
lacks more advanced services that help applications adapt. such as our architecture’s migration and
discovery services. At the same time. Odyssey’s framework for mapping fidelity ranges to actual
resources based on a resource’s type is complimentary to our own work.

Starting with Linda [21]. tuple spaces have been used to coordinate loosely coupled applica-
tions [26, 37, 79. 116]. Departing from the original tuple space model, several of these systems

support more than one global tuple space and may even be extended through application-specific
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code. for example. to automatically synchronize a local and a remote tuple space. Our architecture’s
use of tuples differs from these systems in that. as discussed 1n Chapter 4.2.2, structured /O storage
is a separate service from communications—whether through structured /O networking or through
remote event passing and discovery—and more closely resembles a database interface than Linda’s
in. out. and rd operations. At the same time. applications that require a traditional tuple space can
easily implement such a service on top of remote event passing and structured /O storage. Linda’s
out and rd operations map directly to structured I/O’s pur and read operations (though. every tuple
written through a prer must have a fresh GUID as its [D). Linda’s in operation can be implemented
as a transactional read and delete.

Like tuple spaces. the information bus helps with coordinating loosely coupled services [83].
Unlike tuple spaces. 1t 1s based on a publish/subscribe paradigm and does not retarn sent messages
in storage. While 1ts design 1s nommally object-based. data exchanged through the bus 15 self-
describing and separate from service objects. comparable to the separation of data—n the torm
of tuples—and tunctionality —n the form of components—in one.world. The information bus dy-
namically matches senders and receivers based on so-called subjects. Subjects are hierarchically
structured strings, similar to DNS names, and matching supports equality testtng as well as wild-
cards. Messages are published under specitic subjects and then delivered to all interested parties.
In its ability to deliver messages to receivers based on a property of the message. the information
bus resembles our architecture’s reverse discovery lookups. However. the information bus provides
only a very limited form of reverse lookup and does not support forward lookups at all. Interest-
ingly. the information bus also includes an option for point-to-point communications (albett through
synchronous remote method invocations). just like our architecture supports both point-to-point
communications and the dynamic matching between senders and receivers.

On the surface. Sun’s Jini [S] appears to provide many of the same services as our architecture.
However. Jini embodies a fundamentally different approach to building distributed applications: it
extends single-node programming methodologies. s strongly object-oriented. and relies on remote
method invocations. As a result, Jini requires an overall well-behaved computing environment.
and its services are rather limited when compared to the corresponding services in one.world. In
particular, Jini requires a statically configured discovery server. Moreover. service objects accessible

through discovery double as their own descnptors and can only be accessed through early binding



and simple equality queries. Furthermore. Jini does not provide 1solation between applications
running on the same device. thus making 1t impossible to terminate ill-behaved programs without
terminating all programs on the device. Likewise. Jini synchronously sends remote events through
Java RMI. thus exposing the sender to arbitrary delays on the receiving side. Finally. Jint relies on
distributed garbage collection [90] (DGC) for controlling objects” hfetimes. However. the illusion of
a global pool of objects provided by DGC 1s musleading. Objects can stll be prematurely reclaimed.
for example. when devices are disconnected for a suttictently long time and DGC's internal leases
expire. DGC also makes 1t unnecessanly hard to provide muigration on top of Jint. Since DGC
controls objects” lifetimes. a migration service cannot move obgects without either proxying every
remotely accessible object or being fully integrated with DGC's implementation.

In addition to Jini. the intentional naming system 2] (INS). the secure discovery service [25]
(SDS). the service location protocol {46] (SLP). and universal plug and play [75] (UPnP) all provide
the ability to locate resources by their descriptions. Out of these systems, INS comes the closest to
our architecture’s discovery service. Like one.world. INS supports early and late binding as well
as anycast and mulucast. Furthermore. comparable to the use of discovery server elections in our
architecture, INS' servers automatically form an overlay network to route late binding messages:
though. individual servers still need to be manually contigured. SDS and SLP both explore how to
secure service discovery. Additionally, SDS includes a mechamism for aggregating service descrip-
tions into a global hierarchy of discovery servers. Both efforts are complimentary to our own work.
Finally. UPnP s largely targeted at automatically connecting PCs and stand-alone devices. such as
printers and displays. As a result. it supports only simple matching queries (comparable to subject
matching for the information bus). At the same time. UPnP does include support for event-based
notifications when a device’s state changes. The main difference between these services and our
own is that one.world integrates discovery with point-to-point communications, resulting in a sim-
ple and elegant API that covers the spectrum of remote communications options. Furthermore. our
discovery service is the only one to support reverse lookups.

An exhaustive review of previous work on migration is bevond the scope of this dissertation;
instead. we refer the reader to Milojic¢ic et al.'s excellent Mobiliry [77]. For the purposes of this
discussion, we focus on three representative, “best-of-breed” systems that cover the most important

points in the design space. The three systems are transparent process migration as provided by
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Sprite [28]. object mobulity as provided by Emerald [56. 98]. and mobile agents as provided by
Aglets {63]. Table 8.1 provides a comparison of these systems with one.world’s migration service.

Probably the most important differentiating factor between Sprite and Emerald on one side and
Aglets and one.world on the other side 1s whether migration is transparent. Both Sprite and Emerald
target local networks and. based on the assumption that such networks are well-maintained and expe-
rience few tailures. seek to provide transparent migration. They thus use forwarding addresses [35]
and residual dependencies [91] to hide the effects of focation changes (though. location itseltis vis-
ible 1n Emerald). which results in considerable system complexity. Sprite’s trunsparent integration
with distributed tile storage and Emerald’s transparent support for multiple instruction sets represent
additional sources of complexity. In contrast. migration in Aglets and one.world 1s not transparent.
They migrate only an agent or environment. respectively. and can thus avoid most of the complexity
of the other systems. However. Aglets™ functionality also s rather himuted. as it does not migrate
execution state (though, the Telescript mobile agent system [115] does mugrate execution state) and
does not ntegrate storage beyond the ability to save agents. one.world ditfers trom Aglets in that
it migrates both execution state and persistent data. Furthermore. 1t ditfers from all three systems
in that the environment hierarchy provides a well-defined and clean model for controlling which
environments to move away from a device and which migraung environments to accept on a device.

In [97]. Snoeren et al. introduce a different form of migration. which moves the end-point of
a TCP connection to a different device (without tearing down the connection). TCP end-point mu-
gration 15 orthogonal and complimentary to the migration services discussed above. At the same
time. 1n our experience with one.world. pervasive applications rarely use point-to-point communi-
cations. Instead. they typically communicate through late binding discovery and may additionally
use multicast to address several components at the same time. As a result. we believe that TCP end-
point migration is not as useful for pervasive applications as the environment migration provided by
one.world.

Several other projects are exploring aspects of systems support for pervasive applications. No-
tably. InConcert. the architectural component of Microsoft's EasyLiving project [18]. provides ser-
vice composition in a dynamic environment by relying on location-independent names and asyn-
chronous events. Furthermore, iROS. the operating system for Stanford University’s iRoom

project [52]. features an asynchronous event distribution system, a shared tuple space that not only
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stores but also transforms data. and an automatic user interface generation system. An important
common theme to these efforts and our own 1s the need for networked communications that are
asynchronous and dynamically match senders with receivers. iROS and one.world also share their
reliance on tuples for representing all data. including events. At the same ume. we fundamentally
differ 1n our approaches. The EasvLiving and 1Room projects seek to better integrate the applica-
tions running 1n a single, mtelligent room. As a result. they reuse existing apphicatons wherever
possible and provide only as much system support as strictly necessary. In contrast. one.world has
been designed from the ground up to meet the requirements of pervasive applications. Consequently.
our architecture 1s more complete and more powerful. but also requires that applications be written
from scratch.

Several efforts. including Globe [109]. Globus [34]. and Legion {67]. explore an object-oniented
programming model and infrastructure for wide area computing. They share the important goal of
providing a common execution environment that ts secure and scales across a global computing in-
frastructure. However, these systems are targeted at collaborative and scienufic applications runaing
on conventional PCs and more powerful computers. As a result, these systems are too heavy-weight
and not adaptable enough for pervasive computing environments. Furthermore. as argued in Chap-
ter 2. we believe that their reliance on RPC for remote communications and on objects to encapsulate

data and tuncuonality 15 tll-advised.
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Chapter 9

CONCLLUSIONS

In this dissertation, we have explored how to butld pervasive applications. Pervasive, or ubiquitous.
computing presents an attractive vision for the future of distributed computing. where devices are
ubiquitous and seamlessly coordinate to help people tn accomplishing their tasks. However. existing
approaches to building distributed applications are unsuitable for realizing this vision. The problem
15 that they try to hide distribution and rely on technologies. such as remote procedure call packages.
that extend single-node programming methodologies to distributed systems. Applications built on
top of these technologies tend to be structured like single-node applhications and assume an execu-
tion environment where resources are constant and continwously avatlable. As a result, users must
explicitly recontigure their devices and applications every time the execution environment changes.
which 1s tedious at best and antithetical to the viston of pervasive computing at worst.

To better reahize the viston of pervasive computing, we have introduced a more suitable ap-
proach to building pervasive applications. Under this approach. system support exposes distribution
rather than hide 1t. That way. applications can see contextual change and then adapt to it instead of
forcing users to constantly reconfigure their systems. More formally. this dissertauen has explored
the hypothesis that. by focusing on the unique requirements of pervasive computing. system support
lets applications instead of users adapt to change. yet does not place an undue burden on developers.
In particular, system support needs to address the following three requirements. First. systems need
to embrace contextual change. so that applications can implement their own strategies for handling
changes. Second. systems need to encourage ad hoc composition. so that applications can be dy-
namically connected and extended in an ever changing runtime environment. Third, systems need
10 recognize sharing as the default. so that applications can make information accessible anywhere
and anytime.

We have presented one.world, a system architecture for pervasive computing. that embodies this

approach to building pervasive applications. Our architecture builds on four foundation services
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that directly address the three requirements. First. a virtual machine provides a umiform execution
environment across all devices and supports the ad hoc composition between applications and de-
vices. Second. tuples define a common type system for all apphcations and simplity the shanng
of data. Third. events are used for all communications and make change explicit to applications.
Finally. environments host applications. store persistent data. and—through nesting—facilitate the
composition of applications and services. On top of these foundation services. our architecture pro-
vides a set of system services that address common application needs. including discovery to locate
resources across the network and migration to move or copy applications between devices.

We have validated our architecture by supporting the Labscape team n porting their digital biol-
ogy laboratory assistant to our architecture. by using one.world as the basis for student projects 1n a
semor-level capstone design course. and by developing our own programs—including a replication
service. a user and application manager. and a text and audio messaging system. Our experimental
evaluation has demonstrated that one.world (1) 1s sufticiently complete to support additional ser-
vices, utthties. and applications on top of 1t (2) 15 not sigmiticantly harder to program thun with con-
ventional programmung styles. (3) has acceptable performance. with applications reacting quickly to
change. and. most importantly. (4) enables others to successtully build pervasive applications. How-
ever, our expenimental evaluation has also shown that the scalability of our implementation. notably
that of service discovery. 1s imited. making 1t sustable only for pervasive computing environments
with several dozens of people and devices. Yet, despite these performance concerns. our evaluation
has demonstrated that one.world lets developers effectuively build applications that adapt to change.
thus contirming the hypothesis behind this dissertation.

This dissertation has made the following research contributions. First. we have presented a sys-
tem architecture for pervasive computing. called one.world. that has been designed from the ground
up to address the unique requirements of pervasive computing—embracing change. encouraging
composition. and facilitating sharing. Second. we have introduced the environment service. which
provides a nestable container for persistent storage and computations alike and thus makes it possi-
ble to easily group applications and their data as well as to compose different applications. Third.
we have presented an elegant and flexible remote communications API that provides service dis-
covery and point-to-point communications through only three simple operations. Fourth, we have

described a migration service that leverages our architecture’s environment service to strike a better
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balance between the complexity of transparent process migration and the limited utility of most mo-
bile agent systems and that makes migration in the wide area practical. Finally. we have introduced
the logic/operation pattern as a new software pattern for structuring asynchronous applications and
the corresponding hbrary to stmplify apphcation development.

Based on our own and others” experiences with one.world. this dissertation has also identitied
important lessons, both positive and negative. that are applicable beyond this work. Notably. we
have demonstrated that nesting 1s a powerful paradigm for controlling and composing applications
and tha: the uniform use of structured data enables new funcuonahty and helps to gracetully evolve
a system. However. we have also found that—unlike our architecture. which defines its own com-
munication protocols—modern distributed systems need to be compauble with Internet protocols
first and ofter additional capabilities second. Furthermore. we have found that asynchronous events
are as hard to program as threads. that leases do not work well for controlling local resources. and
that storage and communications are orthogonal to each other and best implemented by separate
services with distinct interfaces.

Finally. this dissertation has suggested directions for future research on pervasive computing.
Most importantly. we have identified the signiticance ot declarative specitications both for detin-
ing a shared data model and for implementing actual applicanon functionality. The marn research
challenge in using declarative specttications for defining a shared data model 1s to meet conflicting
requirements. On one side, such a data model must be general and supported by a wide range of
computing platforms. On the other s:de. the data model must also be simple so that 1t ts easy to pro-
gram and efticient to implement. The main research challenge in using declarative specifications for
implementing application functionality 1s to develop new, declarative programming languages and
the corresponding compiler infrastructure to translate such high-level specifications into programs
running on a system architecture such as one.world. While these research challenges are consider-
able. we also believe that any solution has the potential to significantly simplify the development
of complex systems. More information on one.world. including a source release. is available at

http://one.cs.washington. edu.
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Appendix A

THE MIGRATION PROTOCOL

The implementation of one.world’s migration service 1s centered around the protocol that communt-
cates the migrating environment and 1ts contents. including the execution state and all stored tuples.
from the sending to the receving device. Chapter 5.4 provides an overview over our architecture’s
migration protocol: this appendix presents the protocol 1n detarl. Remember that the protocol moves
O CGpIes AN entire environment tree 1n one, atomie operation and 1s implemented using our archi-
tecture’s remote events. [Uis organized into several rounds. where each event issued by the sender
1s confirmed by the receiver, thus providing a very stmple form ot flow control. Both sender and
recelver use operations to manage the event interchanges. employing a Cha:n:ingClosure as
described 1n Chapter 5.2. The sender’s operation connects cach request to tts response. while the
receiver’s operation connects each response to the next request. It an event s lost or an error oceurs.
the protocol and consequently the migration are aborted. The mugration protocol is illustrated in
Figure A 1 we use the step numbers 1n the text to refer back to this figure.

After receiving a mugration request from an application, the sender prepares for the move or
copy operation by quiescing all environments to be migrated and captures a checkpornt of their ap-
plication state (step 1). Note that. on copy operations. the copied environments are assigned freshly
generated GUIDs to avoid duplicate idenufiers. although the human-readable names remain the
same. After capturing the checkpoint, the sender issues the first protocol message. which specifies
the name of the migrating environment and the identty of the new parent (step 2). It then sends
the metadata for the migrating environment tree (step 5). Next. it reads and sends all stored tuples
(steps 8 and 9). Note that, to avoid the performance overhead ot senalization. tuples are not desen-
alized and serialized when being passed between storage and the network. Rather. they are directly
forwarded as bytestrings that are contained in BinaryData tuples. Finally, the sender issues the
checkpoint (step 12). Once the checkpoint has been confirmed. the migration protocol has success-

fully completed. and the sender can clean up its internal state (step 15). In particular. t destroys the
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Sender Receiver

Quiesce environments
and create checkpoint
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Submit request to future
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Restore checkpoint, commit
Q stored tuples, enqueue

mave/copy notification, and
activate environments

Confirm ____——— |
‘__/‘0 checkpoint
On move, destroy migrated environments;
on copy or when requesting environment @
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v v

Figure A.1: [llustration of one.world’s migration protocol. The vertical arrows represent the flow of
ume. The slanted arrows represent messages. Note that steps 8.9, 10. and 11 are performed zero or
more times. depending on the number of tuples stored in the migrating environment tree.
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migrated environment tree on a move operation. which invalidates reterences from the outside 1nto
the migrated environment tree. Furthermore, on a copy operation or if the requesting environment is
outside the moved tree. the sender notities the requesting environment of the successtully completed
megration.

When receiving a migration request. the receiver uses the request/monitor mechanism to submit
the request to all future ancestral environments. which can erther redirect the migrating environment
tree or reject it (step 3). Note that. i the current implementation. requests are accepted by detault.
In contrast, a production system should reject migration requests by default and. for obvious security
reasons. only accept properly authenticated environments. Once accepted. the receiver contirms the
request to the sender (step 4). After receiving the metadata for the migrating environment tree. the
receiver creates the appropriate mternal data structures (step 6) and 1ssues 4 confirmation (step 7).
Next. after receving a tuple. the receiver tentatively stores that tuple (step 10) and confirms that
it has received the tuple (step 11). Finally. after receiving the checkpont. the receiver restores the
checkpornt (step 13). Once the checkpoint has been restored. the migration has succeeded. The
recerver commits all stored tuples. enqueues notifications of the completed mrgration. activates the
migrated environments, and finally sends contirmation to the sender (step 141, which completes the

migration protocol for the recerver.
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