bl Implication and Equivalence I/0

Check for
Updates

Arun Lakhotis

Madras Computer Laheoratories
S5 B/1 Sixth Cross Strest
CIT Colony, Mylapors
Madras &00 004

INDIA
ABSTRACT
He here introduce the idea of ‘implication’ and
‘eguivalence’ of 170 devices (Sec. Iy, "Implication’ and
‘equivalence’ arng relations defined hetween devices., If a device-

A implies device-B then operations performed on A are also

pecformed on B. If device-& and device-B are equivalent +he
cperations performed on A are performed on B also, and vice-
versa. These device relations are- analogous to algehkraic
“implies’ and ‘eguivalence’ relaticns (Sec. I1Y. Thus they
proemise the vpower of algebraic manipulations on the ‘logical’
devices. We cite some existing sxamples of cases where such

relations may he defined, though in a primitive form. HWe conclude
by citing scme areas of utility for this power.

BACKGROUND

Redirection of I/0 is a very well established concept. The
term "Redirection of I/70" caught on since UNIX [11 and now iz a
feature lookesd forward to in any feorthcoming operating system.
UNIX provides a facility to redirect an input or output operation
requested on the standard input {(stdin), standard output (stdout)
and/or standard error (stderyr) devices to any physical device
{other than the default onel.

The stdin, stdeut and stderr are logical devices which may
he associated +to any (legal) physical device when invoking a
procgram. The process of redirection is transparent to the program
and hence it is possible {(and easy) to develop fairly flexible
device independant programs,

I. INTRODUCING 'IMPLICATION’ & 'EQUIVALENCE’ OF I/0 DEVICES

Of late we have béen feeling the nesd of soms more powerful
facilities for previding device independance to programs. He here
"informally’ introduce the two ideas (yet)-- Implication and

46

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1041490.1041495&domain=pdf&date_stamp=1985-01-01

Equivalence of I/0 devices. This article intends to initiate

=]
discussion on the usabilit feasibili s
feature. Ye sibility and viability of such a

Qutput Implication

If A and B are two output devices and if ocutput(A) implies
output({B) then any output operation regquested for on device(A) is
also performed on device(B).

Thus
output(terminal) => output(Printer)
anything +transmitted to the terminal is sent to
the printer also.(zffect of “P sequence in CP/M
{21, M5-DOS [31).

¥ output({stdout) => outputi{diskfile)
characters displayed on the screen are sent to a
disk-file also.

* output(stderr) => outputi(list_devicel
A copy of error messages is sent to the listing
device also.

OQutput Equivalence

If A and B are two output devices and if ocutputl{a) is
equivalent to output(B) then if an output operation is requested
on device(A) a similar operation is performed on device(B) also.
Further any output request made on device(B) 1is echoed on
devicel(A) also.

output(Terminal) <=> output(Printer)
would mean that a message that is displayed on
the terminal is alse sent to the printer.

Conversely a message printed on the printer is
displayed on the terminal as well.

Note: In order to aveid a2 non-terminating loop of output
(due to equivalence) we need to differesntiate between a direct
output request and the one caused due to sguivaleshoe.

Input Implication
We may define 'input implication’ by a definition symmetric
to ‘output implication’ by substituting ‘input’ for ‘output’ in

the latter’s definition.

If A and B are input devices and if input{d} implie=
input(B) +then any input operation that is requested for on
device({A) is also performed on device(B}.

47

* Input(operator’s console) => input(terminal B)
A program reguesting input from the onerator’s
censcle also accepts input from terminal-

Such a definition will obviously pose guestions abhogt ths
program behavicur cn receliving two inputs when actually
requesting for one. & program would (normally) process only one
input request at a time, Further the "implication" proce: being
transparent (and external} +to a program we do not expect the
program to take care of multiple respenses to a singls request.

This situation has arisen due to our imrlic't assumption
that the same piece of ceode is accepting Loth the p1t=. We have
walked into it hy trying to achieve a functionall avmmetrio
definition to output implicaticn.

ya

Lzt us redefine it eping in mind a multi-tasking approeoach.
If A and B are two 1nput device and input(A) implies inputiR)
then for any task-A requesting input from dEVlLElA) another task-
B is executed {in parallel) which is a copy of the task-A except
that the input requests for device({A) in task-B are redirectsd to
device(B).

input(operater’s console) => input(terminal B}
Terminal B is defined as a parallel operator’s
console. The commands accepted from the operator’s
conscle are accepted from terminal B also., This
makes sense when certain previlege commands can be
invoked from some specific terminals also.

There being two (different) programs accessing one of
devicel(A) or device(B), the probklem of multipls inputs to a
single requsst is solved.

The solution may not be as simple as it sounds because we
are yet to study the implication of such duplicity in context
with the inherited esnvircnment.

Input Equivalence

If A and B are two input devices and if inputid}) is
equivalent +to input(E) then if an input opsration is resgussted
for on device(A) a similar operation is performed on device(B)
also. Further if an input operation is reguestsed on device fP) it
is performed on device(A) as w=ll.

¥ Input(res. terminal A} {(=> input(res. terminal B}
The two reservation terminals 4 and B are to Le
treated identically. The requests from ressrvation
terminal A as well as that from reservation

48

terminal B undergo identical processing.

In spirit of input redirectiofi we’d say that if input{A) is
equivalent to input{B} +then if +task-A requests input on
device{A), another task-B is automatically executed (in parallel)
where task-B is a copy of task-A except that all input requests
on device(A) in task-B are redirected to device(B) alse. At the
same time if task-A requests an input on device(B) then another
task-C is automatically executed, where task-C is a copy of task-
A except that all input requests on device(B) in task-C are
redirected to device{Al.

Such an interpretation has far reaching consequences. Most
impertant heing that more than one task requests input from the
same device at the same tims. Task-A and task-B accept the input
from device!B) and similarly task-A and task-B accept the input
from device(A). One doessn’t have to =laborate the consequences of
such a happening.

Let’s give ancother thought to what we ‘want’ from ‘device
eguivalence .
Ke have =said that -
If +two devices are equivalent +then a program
operating on one device performs the same actions
on any device that is equivalent to it.

Or can we alsoc sayv that

If +two devices are input egquivalent then the data
gensrated by the two underge s=imilar operations.

If we accept the last statement we canm resclve the ‘(logic)
deadlock’ created above by re-stating the equivalence effect as

If two input devices A and B are input =quivalent then all input

requests made by a program on device(A) and (or) device{B) are
treated as input regquests on device({A). Further a copy of the
task is invoked (parallely) in whizch all' the reguests on

device{4d) and {or) device(B) are directed to device(R).

Such & definition would be a lot more meaningful after we
have studied its =ffect on the inherited environment.

II. DEVICE IMPLICATION AND EQUIVALENCE AS RELATIONS

The real power of device implication and equivalence arisss
from ocur recognising them as relaticns defined ocver a set of 1/0
devices (for a particular input or output opsration).

Withcut leoss cf gensrality we may asscciate the relations,

49

implication and equivalencs, with th
rather than a device. HWe would then

and input-squivalent defined over

cutput-implied and output-sguivalen
ocutput devices.

input and putput cperation
ve relations input-implied
he set of input devices,

defined over the set of

ok e
o

Qur previous ﬁotaticn
output(A) =2 ocutput(B)
is now s=gquivalent to
A => B
and
cutput(Ad) <=3 output(B)
is esguivalent teo
A {(=> B.

PR

Similarly we have and ’i{=3X for symbelizing input
implication and input eguivalence.

Her=z after we would not differentiate betwsen an input or
sutput relation and would Just zall them 25 device-implied
{’=') and device-squivalent ('{=2') wherever our statement
holdes geood for either operations. ’

Device implication is transitive
If A =>B and B =>C
then A => C

From our definition of input and ocutput implication we can
that if device-4 implies device-B and device-B implies
vige-C then an operation performed on device-A is performed on
:vice-B and an operation performed on device-B is performed on
vice-C as well. Therseby an operation performed on device-A is
erformed on device-C also.

i
I}]

]

m

e R e
1]

Device implication is reflexive
A => A
holds good as an cutput coming on device-4 is sent to itself.
Device equivalence is transitive

If A<C(=>B and B <{(=>C

50

then A <(=> C

Any operation performed on device-B is performed on device-a
ags well (and vice-versa). Further as any operation performed on
device-B is performed on device-C alsc {and vice versa) we can
say that any operation that is performed on device-A is performesd
on device-C alsec (and viceversa)l.
Device equivalence is reflexive

A (=> A

is obvious
Device equivalence is symmetric

If A {(=> B

then B {(=> A.

is obvious from the very definition of device equivalsnce.

Device equivalence may be achieved by device implication
If A =>B and B => A

then A {(=> B.

An operaticn performed on device-A is performed on device-B
{due +to implication) and an operation performed on device-B is
performed on device-4 (due to implication), Hence device-A is
equivalent to device-B {definition of equivalence).

III. CONCLUSION

The +transitive nature of device implication premisss a
tremendous potential to a device independant program.

Consider the problems like

1) Broadcasting a message tc ssveral terminals {or
users)
Mail/ memo transfer to several network nedes.

3) Handling a number of reservation terminals.

all of +them boil down to inveking simple programs with
suitable device implications extermnal to it. Hith +the system
supperting the work of duplicating cutput or input the user is

left only with the work intrinsic to the prokhlem.

51

A specific task (though one may consider it +tco +trivial)
which may be eased due to device implication is "error-handling’.
Error handling normally requires echoing an srror to a standard
output device and a standard list device also. With the nrevelant
techniques this is achisved by writing separate ocutput statements
for every device on which the error is to he transmitted. Deviecs
implication reduces this to simply cone ‘generic’ output
statement, leaving +the task of multiplizating the cutput ta the
system.

One doesn’t have to stress the utility of CP/M ~F facility,
UNIX ‘tee’ and dBASE ALTERNATE [4] facility. Thess are basically
device implication in a restricated demain.

NEWDOS-80 'ROUTE’ command [5] is by far the nearest example
o0f defining device implication and equivalence . Using ths
"ROUTE’ one can acheive redirection, implication as well as
equivalence. The input implication and equivalences is not truly
what we have defined but a more practical implementation. Tt
resolves the input implication problem by assigning a sequential
order on the implied devices. When an input is requested it tests
{in order) which device is ready for input. The first device
which is found ready is issued the request.

Equivalence may be achieved in NEWDOS-80 by circular ROUTEing.

REFERENCES

1) Richie & Thompson, "The UNIX Time- Sharing 3ystem", CACM 17,7
July 1974, pp 365-373.

[2Z] "The CP/M Reference Manual", Digital Research Inc..

[3]1 "MS-DOS", Microsoft Inc., 1983.

{4 Ratliff, M., "dBASE II Assembly Language Relational Database
Management System”, RSP Inc., pp BO-B81.

[5]1 "NEWDOS-80", Apparat Inc., pp 442-443.

JRADEMARKS

UNIX is a trademark of Bell Laboratories.
CP/M is a trademark of Digital Research Inc.
MS is a trademark of Microsoft Corporation.
dBABE-I1 is a trademark of Ashton-Tate.
NEWDOS-80 is a trademark of Apparat Inc.

52

