
Implication and Equivalence I/O

Arun Lakhotia

Madras Computer Labozatories
5 B/i Sixth Cross Street

CIT Colony, Mylapore
Madras 600 004

INDIA

ABSTRACT

He here introduce the idea of 'implication' and
'equivalence' of I/O devices (See. I). 'Implication' and
'equivalence' art relations defined between devices. If a device-
A implies devfce-B then operations performed on A are also
performed on B. If device-A and device-B are equivalent the
operations performed on A are performed on B also, and view-
versa. These device relations are- analogous to algebraic
'implies' and 'equivalence ~ relations (See. II). Thus they
promise the power of algebraic manipulations on the 'logical'
devices. He cite some existing examples of cases where such
relations may be defined, though in a primitive form. He conclude
by citing some areas of utility for this power.

BACKGROUND

Redirection of I/O is a very well established concept. The
term "Redirection of I/O" caught on since UNIX [I] and now is a
feature looked forward to in any forthcoming operating system.
UNIX provides a facility to redirect an input or output operation
requested on the standard input (stdin), standard output (stdout)
and/or standard error (stderr) devices %o any physical device
(other than the default one).

The stdin, stdout and stderr are logical devices which may
be associated to any (legal) physical device when invoking a
program. The process of redirection is transparent to the program
and hence it is possible (and easy) %o develop fairly flexible
device independant programs.

I. INTRODUCING 'IMPLICATION' & 'EOUIVALENCE' OF I/O DEVICES

Of late we have b6en feeling the need of some more powerful
facilities for providing device independance to programs. We here
'informally' introduce the two ideas (yet)-- Implication and

46

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1041490.1041495&domain=pdf&date_stamp=1985-01-01

Equivalence of I/0 devices.
discussion on the usability,
feature.

This article intends to initiate a
feasibility and viability of such a

Output Implication

If A and B are two output devices and if output(A) implies
output(B) then any output operation requested for on device(A) is
also performed on device(B).

Thus
output(terminal) = } output(Printer)
anything transmitted to the terminal is sent to
the printer also. (effect of ^P sequence in CP/M
[2] , MS-DOS [3]) .

output(stdout) =} output(diskfile)
characters displayed on the screen are sent to
disk-file also.

output(stderr) =} output(list_device)
A copy of error messages is sent to the fitting
device also.

Output Equivalence

If A and B are two output devices and if output(A) is
equivalent to output(B) then if an output operation is requested
on device(A) a similar operation is performed on device(B) also.
Further any output ~equest made on device(B) is echoed on
device(A) also.

output(Terminal) <=} output(Printer)
would mean that a message that is displayed on
the terminal is also sent to the printer.
Conversely a message printed on the printer is
displayed on the terminal as well.

Note: In order to avoid a non-terminating loop of
(due to equivalence) we need to differentiate between a
output request and the one caused due to equivalehce.

output
direct

Input Implication

We may @efine 'input implication' by a definition symmetric
to 'output implication' by substituting 'input' for output' in
the farter's definition,.~

If A and B are input devices and if
input(B) then any input operation that is
device(A) is also performed on device(B).

input A)
requested

imp!ie~
~or on

47

Input(operator's console) =} input(terminal B)
A program requesting input from the operator's
console also accepts input from terminal-B.

Such a definition will obviously pose questions abo~t ±be
program behaviour on receiving two inputs when actually
requesting for one. A program would (normally) process only one
input request at a time. Further the "implication" process being
transparent (and external) to a prog[am w~ do not explicit the
program to take care of multiple responses to a single request.

This situation has arisen due to ou: implicit a~umptior,
that the same piece of code is accepting both the inputs. He have
walked into it by trying to achieve a funciionally ~ymm~tric
definition to output implication.

Let us redefine it keeping in mind a multi-tasking approach.
If A and B are two input device and input(A) implies input(B)
then for any task-A requesting input from device(A) another task-
B is executed (in parallel) which is a copy of %he task-A except
that the input requests for device(A) in task-B are redirected to
device(B).

input(operator's console) =} input(terminal B)
Terminal B is defined as a parallel operator'~
console. The commands accepted from the epera±or's
console are accepted from terminal B also. Thi~
makes sense when certain previlege commands can be
invoked from some specific terminal~ a!~o.

There being two (different) programs accessing one of
device(A) Or device(B), the problem of multiple inputs to a
single request is solved.

The solution may not be as simple as it sounds
are yet to study the implication of such duplicity
with the inherited environment.

because we

in context

Input Equivalence

If A and B are two input devices and if input(A) is
equivalent to input(B) then if an input operation is requ~=~t~d
for on device(A) a similar operation is performed on device(B)
also. Further if an input operation is requested on dailies(B) it
is performed on device(A) as well.

Input(res. terminal A) {=} input(res, terminal B)
The two reservation terminals A and B are to b~
treated identically. The requests from reservation
terminal A as well as that from reservation

48

terminal E undergo identical processing.

In spirit of input redirection we'd say that if input(A) i~
equivalent to input(B) then if task-A requests input on
device(A), another task-B is automatically executed (in parallel)
where task-B is a copy of task-A except that all input requests
on device(A) in task-B are redirected to device(B) also. At the
same time if task-A requests an input on device(B) then another
task-C is automatically executed, where task-C is a copy of task-
A except that all input requests on device(B) in task-C are
redirected %o device(A).

Such an interpretation has far reaching consequences. Most
important being that more than one task requests input from the
same device at the same time. Task-A and task-B accept the input
from device(B) and similarly task-A and task-B accept the input
from device(A). One doesn't haveto elaborate the consequences of
such a happening.

Let's give another thought to what we 'want'
equivalence'.

We have said that -

from 'device

If two devices are equivalent then a
operating on one device performs the same
on any device that is equivalent to it.

program
actions

Or can we also say that

If two devices are input equivalent then the data
generated by the two undergo similar operations.

If we accept the last statement we cam resolve the '(logic)
deadlock' created above by re-stating the equivalence effect as

If two input devices A and B are input equivalent then all input
requests made by a program on device(A) and (or) device(BY are
treated as input requests on device(A). Further a copy of the
task is invoked (parallely) in which all the requests on
device(A) and (or) device(B) are directed to device(B).

Such a definition would be a !or more meaningful after
have studied its effect on the inherited environment.

we

I I . DEVICE IMPLICATION AND EQUIVALENCE AS RELATIONS

The real power of device implication and equivalence arises
from our recognising them as relations defined over a set of I/O
devices-(for a particular input or output operation).

Without loss of generality we may associate the [elations,

49

implication and equivalence, with the input and output operation
rather than a device. ~e would then have ~lations input-impii~,d
and input-equivalent defined oyez the set of input devices,
output-implied and output-equivalent defined ~ve: the s~t ~;~f
output devices.

Our previous notation

output(A) => output(B)

is now equivalent to

A => B

and

output(A) {=) output(B)

is equivalent to

A {=) B.

Similarly we have '=>' and '~=>'
implication and input equivalence.

for symbolizing input

Here after we would not differentiate between an input or
output relation and would just call them as device-implied
('=}') and device-equivalent ('<=}') wherever our statement
holds good for either operations.

Device implication is transitive

If A =} B and B =} C

%hen A =} C

From ou~ definition of input and output implication we can
see that if device-A implies device-B and device-B implies
device-C then an operation performed on device-A is performed on
device-B and an operation performed on device-B is performed tin
device-C as well. Thereby an operation performed on device-A is
performed on device-C also.

Device implication is reflexive

A => A

holds good as an output coming on device-A is sent to itself.

Device equivalence is transitive

If A <=> B and B {=} C

50

then A {=} C

Any operation performed on device-B is performed on device-A
as well (and vice-versa). Further as any operation performed on
device-B is performed on device-C also (and vice versa) we can
say that any operation that is performed on device-A is performed
on device-C also (and viceversa),

Device equivalence is reflexive

A {=} A

is obvious

Device equivalence is symmetric

If A <=} B

then B {=} A.

is obvious from the very definition of device equivalence.

Device equivalence may be achieved by device implication

If A =} B and B =} A

then A {=} B.

An operation performed on device-A is performed on device-B
(due to implication) and an operation performed on device-B is
performed on device-A (due to implication), Hence device-A is
equivalent %o device-B (definition of equivalence).

III. CONCLUSION

The transitive nature of device implication
tremendous potential %o a device independan% program.

Consider the problems like

promises a

i) Broadcasting a message to several terminals
users)

2) Mail/ memo transfer to several network nodes.
3) Handling a number of reservation terminals.

all of them
suitable device
supporting the work of duplicating output or input the user
left only with the work intrinsic to the problem.

(or

boil down to invoking simple programs with
implications external to it. Hith the system

is

51

A specific task (though one may consider it too trivial)
which may be eased due to device implication is 'error-handling'.
Error handling normally requires echoing an error to a standazd
output device and a standard list device also. With the prevelant
techniques this is achieved by writing separate output statements
for every device on which the error is %o be transmitted. Device
implication reduces this to simply one 'generic' output
statement, leaving the task of multiplicating the output t~ the
system.

One doesn't have to stress the utility of CP/M "P facility,
UNIX 'tee' and dBASE ALTERNATE [4] facility. These are basically
device implication in a restricated domain.

NEHDOS-80 'ROUTE' command [5] is by far the nearest example
of defining device implication and equivalence Using the
~ROUTE' one can acheive redirection, implication as weJl a~
equivalence. The input implication and equivalence is not %~uly
what we have defined but a more practical implementation. It
resolves the input implication problem by assigning a sequential
order on the implied devices. When an input is requested it tests
(in order) which device is ready for input. The fixst device
which is found ready is issued the request.

Equivalence may b e achieved in NEHDOS-80 by circula[ROUTEing.

REFERENCES

[i] Richie & Thompson, "The UNIX Time- Sharing System", CACM 17,7
July 1974, pp 365-375.

[2] "The CP/M Reference Manual", Diqital Research Inc..

[3] "MS-DOS", Microsoft Inc., 1983.

[4] Ratliff, H., "dBASE II Assembly Language Relational Database
Management System", ~SP Inc., pp 80-81.

[5] "NEHDOS-80", Apparat Inc., pp 4#2-4~3.

TRADEMARKS

UNIX is a trademark of Bell Laboratories.
CP/M is a trademark of Digital Research Inc.
MS is a trademark of Microsoft Corporation.
dBASE-II is a trademark of Ashton-Tate.
NEWDOS-80 is a trademark of Apparat Inc.

52

