skip to main content
article

Mining structures for semantics

Published: 01 December 2004 Publication History

Abstract

Online data is available in two avors: unstructured data that resides as free text in HTML pages, and structured data that resides in databases and knowledge bases. Unstructured data is easily accessed as human-readable text on a browser, while structured data is hidden behind web query interfaces (web forms), web services, and custom database APIs. Access to this data, popularly referred to as the hidden web, entails submitting correctly completed web forms or writing code to access web services using protocols such as SOAP.

References

[1]
Binding Point. http://www.bindingpoint.com.
[2]
WordNet. http://www.cogsci.princeton.edu/~wn/.
[3]
R. Agarwal, T. Imielinski, and A. Swami. Mining Associations between Sets of Items in Massive Databases. In SIGMOD, 1993.
[4]
J. Berlin and A. Motro. Database Schema Matching Using Machine Learning with Feature Selection. In CAiSE, 2002.
[5]
S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. JASIS, 41(6):391--407, 1990.
[6]
H.-H. Do and E. Rahm. COMA - A System for Flexible Combination of Schema Matching Approaches. In VLDB, 2002.
[7]
A. Doan, P. Domingos, and A. Y. Halevy. Reconciling Schemas of Disparate Data Sources: A Machine Learning Approach. In SIGMOD, 2001.
[8]
A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy. Learning to Map between Ontologies on the Semantic Web. In WWW, 2002.
[9]
X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity Search for Web Services. In VLDB, 2004.
[10]
B. He and K. C.-C. Chang. Statistical Schema Matching across Web Query Interfaces. In SIGMOD, 2003.
[11]
J. Kang and J. Naughton. On schema matching with opaque column names and data values. In SIGMOD, 2003.
[12]
L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, New York, 1990.
[13]
J. Madhavan, P. Bernstein, K. Chen, A. Halevy, and P. Shenoy. Corpus-based Schema Matching. In Information Integration Workshop at IJCAI, 2003.
[14]
J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based Schema Matching. In ICDE, 2005.
[15]
S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph Matching Algorithm. In ICDE, 2002.
[16]
N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In AAAI, 2000.
[17]
E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB Journal, 10(4), 2001.
[18]
S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 2nd edition, 2003.
[19]
G. Salton, editor. The SMART Retrieval System---Experiments in Automatic Document Retrieval, 1971.
[20]
K. M. Ting and I. H. Witten. Issues in Stacked Generalization. Journal of Artificial Intelligence Research, 10:271--289, 1999.
[21]
J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma. Instance-based Schema Matching for Web Databases by Domain-specific Query Probing. In VLDB, 2004.
[22]
W. Wu, C. Yu, A. Doan, and W. Meng. An Interactive Clustering-based Approach to Integrating Source Query interfaces on the Deep Web. In SIGMOD, 2004.
[23]
L. Xu and D. Embley. Discovering Direct and Indirect Matches for Schema Elements. In DASFAA, 2003.
[24]
A. M. Zaremski and J. M. Wing. Specification matching of software components. TOSEM, 6:333--369, 1997.

Cited By

View all
  • (2021)Data augmentation for ML-driven data preparation and integrationProceedings of the VLDB Endowment10.14778/3476311.347640314:12(3182-3185)Online publication date: 28-Oct-2021
  • (2021)Measuring Semantic Similarity between Services Using HypergraphsThe 23rd International Conference on Information Integration and Web Intelligence10.1145/3487664.3487693(205-211)Online publication date: 29-Nov-2021
  • (2021)Test-Oriented RESTful Service Discovery with Semantic Interface CompatibilityIEEE Transactions on Services Computing10.1109/TSC.2018.287113314:5(1571-1584)Online publication date: 1-Sep-2021
  • Show More Cited By
  1. Mining structures for semantics

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM SIGKDD Explorations Newsletter
    ACM SIGKDD Explorations Newsletter  Volume 6, Issue 2
    December 2004
    161 pages
    ISSN:1931-0145
    EISSN:1931-0153
    DOI:10.1145/1046456
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 December 2004
    Published in SIGKDD Volume 6, Issue 2

    Check for updates

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 16 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Data augmentation for ML-driven data preparation and integrationProceedings of the VLDB Endowment10.14778/3476311.347640314:12(3182-3185)Online publication date: 28-Oct-2021
    • (2021)Measuring Semantic Similarity between Services Using HypergraphsThe 23rd International Conference on Information Integration and Web Intelligence10.1145/3487664.3487693(205-211)Online publication date: 29-Nov-2021
    • (2021)Test-Oriented RESTful Service Discovery with Semantic Interface CompatibilityIEEE Transactions on Services Computing10.1109/TSC.2018.287113314:5(1571-1584)Online publication date: 1-Sep-2021
    • (2021)Improving Ocean Data Services with Semantics and Quick IndexJournal of Computer Science and Technology10.1007/s11390-021-1374-036:5(963-984)Online publication date: 1-Oct-2021
    • (2015)A Similarity-Based Concepts Mapping Method between OntologiesIEICE Transactions on Information and Systems10.1587/transinf.2014EDP7188E98.D:5(1062-1072)Online publication date: 2015
    • (2015)Contextual service discovery using term expansion and binding coverage analysisFuture Generation Computer Systems10.1016/j.future.2014.09.01348:C(73-81)Online publication date: 1-Jul-2015
    • (2015)Practical Measurements for Quality of Ontology Matching Applying to the OAEI DatasetAdvances in Artificial Intelligence and Soft Computing10.1007/978-3-319-27060-9_10(118-126)Online publication date: 30-Dec-2015
    • (2014)Failure analysis and tolerance strategies in web service ecosystemsConcurrency and Computation: Practice and Experience10.1002/cpe.331927:5(1355-1374)Online publication date: 21-Jul-2014
    • (2013)Web Service Discovery Using Lexical and Semantic Query ExpansionProceedings of the 2013 IEEE 10th International Conference on e-Business Engineering10.1109/ICEBE.2013.65(423-428)Online publication date: 11-Sep-2013
    • (2013)Combination of Lexical and Structure-Based Similarity Measures to Match Ontologies AutomaticallyKnowledge Discovery, Knowledge Engineering and Knowledge Management10.1007/978-3-642-54105-6_7(101-112)Online publication date: 2013
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media