skip to main content
10.1145/1064092.1064099acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

Almost tight bound for a single cell in an arrangement of convex polyhedra in R3

Published:06 June 2005Publication History

ABSTRACT

We consider the problem of bounding the combinatorial complexity of a single cell in an arrangement of k convex polyhedra in 3-space having n facets in total. We use a variant of the technique of Halperin and Sharir [17], and show that this complexity is O(nk1+ε), for any ε > 0, thus almost settling a conjecture of Aronov et. el. [5]. We then extend our analysis and show that the overall complexity of the zone of a low-degree algebraic surface, or of the boundary of an arbitrary convex set, in an arrangement of k convex polyhedra in 3-space with n facets in total, is also O(nk1+ε), for any ε > 0. Finally, we present a deterministic algorithm that constructs a single cell in an arrangement of this kind, in time O(nk1+ε log2n), for any ε 0.

References

  1. B. Aronov and M. Sharir. Triangles in space or building (and analyzing) castles in the air. Combinatorica, 10(2):137--173, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Aronov and M. Sharir. Castles in the air revisited. Discrete Comput.G om., 12:119--150, 1994.Google ScholarGoogle Scholar
  3. B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM J.Comput., 26(6):1785--1803, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. Aronov and M. Sharir. The common exterior of convex polygons in the plane. Comput. Geom. Theory Appl., 6(3):139--149, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Aronov, M. Sharir, and B. Tagansky. The union of convex polyhedra in three dimensions. SIAM J.Comput., 26(6):1670--1688, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Basu. On the combinatorial and topological complexity of a single cell. Discrete Comput. Geom., 29(1):41--59, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. D. Boissonnat, M. Sharir, B. Tagansky and M. Yvinec. Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete Comput. Geom., 14:485--519, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  8. B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms for bichromatic line segment problems and polyhedral terrains. Algorithmica, 11:116--132, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and J. Snoeyink. Computing a face in an arrangement of line segments and related problems. SIAM J.Comput., 22(6):1286--1302, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Chazelle, H. Edelsbrunner. Fractional cascading: I. A data structuring technique. Algorithmica, 1(2):133--162, 1986.Google ScholarGoogle ScholarCross RefCross Ref
  11. L. P. Chew, K. Kedem, M. Sharir, B. Tagansky, and E. Welzl. Voronoi diagrams of lines in 3-space under polyhedral convex distance functions. J.Algorithms, 29(2):238--255, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. Discr te Comput. Geom., 4(5):387--421, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. H. Edelsbrunner, L. J. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane: Topology, combinatorics, and algorithms. Theoretical Comput.Sci., 92:319--336, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. J. Guibas, M. Sharir, and S. Sifrony. On the general motion planning problem with two degrees of freedom. Discrete Comput. Geom., 4:491--521, 1989.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Halperin. Algorithmic Motion Planning via Arrangements of Curves and of Surfaces. Ph.D. thesis, Computer Science Department, Tel-Aviv University, Tel Aviv, July 1992.Google ScholarGoogle Scholar
  16. D. Halperin and M. Sharir. New bounds for lower envelopes in three dimensions with applications to visibility of terrains. Discrete Comput. Geom., 12:313--326, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Halperin and M. Sharir. Almost tight upper bounds for the single cell and zone problems in three dimensions. Discrete Comput. Geom., 14(4):385--410, 1995.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Hatcher. Algebraic Topology. Cambridge University Press, first edition, 2002.Google ScholarGoogle Scholar
  19. M. W. Hirsch. Differential Topology, Volume33 of Graduat Texts in Math maticsematics. Springer-Verlag, Berlin, Heidelberg, New York, 1976.Google ScholarGoogle Scholar
  20. D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces and its applications. Discrete Computat. Geom., 9:267--291, 1993.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. G. Kirkpatrick and D. P. Dobkin. Fast detection of polyhedral intersection. Theoretical Computer Science, 27:241--253, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Pach, I. Safruti, and M. Sharir. The union of congruent cubes in three dimensions. Discrete Comput. Geom., 30:133--160, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  23. L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP:Graph.Models Imag Process., 56(4):304--310, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Sharir and P. Agarwal. Davenport-Schinz l Sequences and Their Geometric Applications. Cambridge University Press, New York, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. T. Schwartz, and M. Sharir. On the "Piano Movers" problem: II. General techniques for computing topological properties of real algebraic manifolds. Adv.Appl.Math.,4: 298--351, 1983.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. O. Schwarzkopf, and M. Sharir. Vertical decomposition of a single cell in a 3-dimensional arrangement of surfaces. Discrete Comput. Geom., 18:269--288, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete Comput. Geom., 12:327--345, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. B. Tagansky. A new technique for analyzing substructures in arrangements of piecewise linear surfaces. Discrete Comput. Geom., 16(4):455--479, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Almost tight bound for a single cell in an arrangement of convex polyhedra in R3

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCG '05: Proceedings of the twenty-first annual symposium on Computational geometry
      June 2005
      398 pages
      ISBN:1581139918
      DOI:10.1145/1064092

      Copyright © 2005 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 June 2005

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      SCG '05 Paper Acceptance Rate41of141submissions,29%Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader