skip to main content
10.1145/1064092.1064121acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

Multi-pass geometric algorithms

Published: 06 June 2005 Publication History

Abstract

We initiate the study of exact geometric algorithms that require limited storage and make only a small number of passes over the input. Fundamental problems such as low-dimensional linear programming and convex hulls are considered.

References

[1]
P. K. Agarwal, S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian. Streaming geometric optimization using graphics hardware. In LNCS/ESA 11th 2832 544--555 2003.
[2]
A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich. Deterministic sampling and range counting in geometric data streams. In Proc 20th 144--151 2004.
[3]
Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. In Proc 43rd 209--218 2002.
[4]
A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequential model of computation. Jl SIComp 11 287--297 1982.
[5]
H. Brönnimann, T. M. Chan, and E. Y. Chen. Towards in-place geometric algorithms and data structures. In Proc 20th 239--246 2004.
[6]
T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proc SODA 15th 423--429 2004.
[7]
T. M. Chan. Faster core-set constructions and data stream algorithms in fixed dimensions. In Proc 20th 152--159 2004.
[8]
B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. In Proc STOC 35th 531--540 2003.
[9]
K. L. Clarkson. New applications of random sampling in computational geometry. JlDCG 2 195--222 1987.
[10]
K. L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small. JlJACM 42 488--499 1995.
[11]
K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II. JlDCG 4 387--421 1989.
[12]
P. Drineas and R. Kannan. Pass efficient algorithms for approximating large matrices. In Proc SODA 14th 223--232 2003.
[13]
M. E. Dyer. Linear time algorithms for two- and three-variable linear programs. Jl JComp 13 31--45 1984.
[14]
J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model. In LNCS ICALP31st 3142 531--543 2004.
[15]
J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the streaming model: the value of space. In Proc SODA 16th 745--754 2005.
[16]
M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. In Proc Proc. SIGMOD 58--66 2001.
[17]
M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical Note 1998-011, Digital Systems Research Center, Palo Alto, CA, 1998.
[18]
D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? Jl SIComp 15 287--299 1986.
[19]
J. Matoušek. Derandomization in computational geometry. In Handbook of Computational Geometry (J.-R. Sack and J. Urrutia, eds.), pages 559--595, Elsevier, Amsterdam, 2000.
[20]
N. Megiddo. Linear time algorithms for linear programming in R3 and related problems. Jl SIComp 12 759--776 1983.
[21]
N. Megiddo. Linear programming in linear time when the dimension is fixed. Jl JACM 31 114--127 1984.
[22]
N. Megiddo. Partitioning with two lines in the plane. Jl JAlg 6 430--433 1985.
[23]
K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Englewood Cliffs, N.J., 1994.
[24]
J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Jl TCS 12 315--323 1980.
[25]
S. Muthukrishnan. Data streams: Algorithms and applications. Manuscript, http://www.cs.rutgers. edu/~muthu/stream-1-1.ps, 2003.
[26]
M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. Jl JCSS 23 166--204 1981.
[27]
J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proc FOCS 39th 264--268 1998.
[28]
F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.
[29]
Small-dimensional linear programming and convex hulls made easy. Jl DCG 6 423--434 1991.
[30]
M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems. In LNCS STACS 9th 577 569--579 1992.
[31]
S. Suri, C. D. Tóth, and Y. Zhou. Range counting over multidimensional data streams. In Proc 20th 160--169 2004.

Cited By

View all
  • (2023)How to compute the convex hull of a binary shape? A real-time algorithm to compute the convex hull of a binary shapeJournal of Real-Time Image Processing10.1007/s11554-023-01359-820:6Online publication date: 1-Dec-2023
  • (2007)Lower bounds for quantile estimation in random-order and multi-pass streamingProceedings of the 34th international conference on Automata, Languages and Programming10.5555/2394539.2394623(704-715)Online publication date: 9-Jul-2007
  • (2007)Geometric streaming algorithms with a sorting primitiveProceedings of the 18th international conference on Algorithms and computation10.5555/1781574.1781632(512-524)Online publication date: 17-Dec-2007
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCG '05: Proceedings of the twenty-first annual symposium on Computational geometry
June 2005
398 pages
ISBN:1581139918
DOI:10.1145/1064092
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 June 2005

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. convex hulls
  2. linear programming
  3. streaming algorithms

Qualifiers

  • Article

Conference

SoCG05

Acceptance Rates

SCG '05 Paper Acceptance Rate 41 of 141 submissions, 29%;
Overall Acceptance Rate 625 of 1,685 submissions, 37%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)1
Reflects downloads up to 22 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)How to compute the convex hull of a binary shape? A real-time algorithm to compute the convex hull of a binary shapeJournal of Real-Time Image Processing10.1007/s11554-023-01359-820:6Online publication date: 1-Dec-2023
  • (2007)Lower bounds for quantile estimation in random-order and multi-pass streamingProceedings of the 34th international conference on Automata, Languages and Programming10.5555/2394539.2394623(704-715)Online publication date: 9-Jul-2007
  • (2007)Geometric streaming algorithms with a sorting primitiveProceedings of the 18th international conference on Algorithms and computation10.5555/1781574.1781632(512-524)Online publication date: 17-Dec-2007
  • (2007)Geometric Streaming Algorithms with a Sorting PrimitiveAlgorithms and Computation10.1007/978-3-540-77120-3_45(512-524)Online publication date: 2007
  • (2007)Lower Bounds for Quantile Estimation in Random-Order and Multi-pass StreamingAutomata, Languages and Programming10.1007/978-3-540-73420-8_61(704-715)Online publication date: 2007
  • (2005)Data streamsFoundations and Trends® in Theoretical Computer Science10.1561/04000000021:2(117-236)Online publication date: 1-Aug-2005

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media