skip to main content
10.1145/1064092.1064135acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
Article

Curvature-bounded traversals of narrow corridors

Published:06 June 2005Publication History

ABSTRACT

We consider the existence and efficient construction of bounded curvature paths traversing constant-width regions of the plane, called corridors. We make explicit a width threshold τ with the property that (a) all corridors of width at least τ admit a unit-curvature traversal and (b) for any width w < τ there exist corridors of width w with no such traversal. Applications to the design of short, but not necessarily shortest, and high clearance, but not necessarily maximum clearance, curvature-bounded paths in general polygonal domains, are also discussed.

References

  1. P. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides. Curvature-constrained shortest paths in a convex polygon. SIAM Journal on Computing, 31(6):1814--1851, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. P. K. Agarwal, P. Raghavan, and H. Tamaki. Motion planning for a steering-constrained robot through moderate obstacles. In Proc. 27th Annu. ACM Sympos. Theory Comput., pages 343--352, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. P. K. Agarwal and H. Wang. Approximation algorithms for curvature constrained shortest paths. SIAM Journal on Computing, 30(6): 1739--1772, 2002 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Barraquand and J.-C. Latombe. Nonholonomic multi-body mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica, 10:121--155, 1993.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Berglund, U. Erikson, H. Jonsson, K. Mrozek,, and I. Söderkvist. Automatic generation of smooth paths bounded by polygonal chains. In International Conference on Computational Intelligence for Modelling Control and Automation (CIMCA'2001), 2001.Google ScholarGoogle Scholar
  6. J.-D. Boissonnat, S. Ghosh, T. Kavitha, and S. Lazard. An algorithm for computing a convex and simple path of bounded curvature in a simple polygon. Algorithmica, 34(2): 109--156, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J.-D. Boissonnat and S. Lazard. A polynomial-time algorithm for computing a shortest path of bounded curvature amidst moderate obstacles. Int. J. Comput. Geometry Appl., 13(3): 189--229, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. X.-N. Bui, P. Souères, J.-D. Boissonnat, and J.-P. Laumond. Shortest path synthesis for Dubins nonholonomic robot. In Proc. IEEE Internat. Conf. Robot. Autom., pages 2--7, 1994.Google ScholarGoogle Scholar
  9. J. Canny and B. R. Donald. Simplified Voronoi diagrams. Discrete Comput. Geom., 3:219--236, 1988.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Canny and J. H. Reif. New lower bound techniques for robot motion planning problems. In Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., pages 49--60, 1987.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. L. E. Dubins. On curves of minimal length with a constant on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79:497--516, 1957.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Fortune and G. T. Wilfong. Planning constrained motion. Annals of Mathematics and Artificial Intelligence, 3(1):21--82, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  13. L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci., 39(2):126--152, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Hershberger. A new data structure for shortest path queries in a simple polygon. Inform. Process. Lett., 38:231--235, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class. Comput. Geom. Theory Appl., 4:63--98, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Hershberger and S. Suri. An optimal algorithm for euclidean shortest paths in the plane. SIAM Journal on Computing, 28(6):2215--2256, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Jacobs and J. Canny. Planning smooth paths for mobile robots. In Proc. IEEE Internat. Conf. Robot. Autom., pages 2--7, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  18. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J.-P. Laumond, P. Jacobs, M. Taix, and R. M. Murray. A motion planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom., 10(5):577--593, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  20. J.-P. Laumond(ed.). Robot motion planning and control. Springer-Verlag, New York, NY, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Lutterkort and J. Peters. Smooth paths in a polygonal channel. In Proc. 15th Annual ACM Sympos. on Comput. Geometry, pages 316--321, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Ó'Dúnlaing and C. K. Yap. A "retraction" method for planning the motion of a disk. J. Algorithms, 6:104--111, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Reif and H. Wang. The complexity of the two dimensional curvature-constrained shortest-path problem. In Proc. 3rd Workshop on the Algorithmic Foundations of Robotics, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. H. Reif. Complexity of the generalized movers problem. In J. Hopcroft, J. Schwartz, and M. Sharir, editors, Planning, Geometry and Complexity of Robot Motion, pages 267--281. Ablex Publishing, Norwood, NJ, 1987.Google ScholarGoogle Scholar
  25. J. T. Schwartz and M. Sharir. Algorithmic motion planning in robotics. In J. van Leeuwen, editor, Algorithms and Complexity, volume A of Handbook of Theoretical Computer Science, pages 391--430. Elsevier, Amsterdam, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Sellen. Approximation and decision algorithms for curvature-constrained path planning: A state-space approach. In Proc. 3rd Workshop on the Algorithmic Foundations of Robotics, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Curvature-bounded traversals of narrow corridors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SCG '05: Proceedings of the twenty-first annual symposium on Computational geometry
      June 2005
      398 pages
      ISBN:1581139918
      DOI:10.1145/1064092

      Copyright © 2005 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 June 2005

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      SCG '05 Paper Acceptance Rate41of141submissions,29%Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader