skip to main content
10.1145/1073884.1073909acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
Article

On computing nearest singular hankel matrices

Published: 24 July 2005 Publication History

Abstract

We explore the problem of computing a nearest singular matrix to a given regular Hankel matrix while preserving the structure of the matrix. Nearness is measured in a matrix norm, or a componentwise norm. A recent result for structured condition numbers leads to an efficient algorithm in the spectral norm. We devise a parametrization of singular Hankel matrices, to discuss other norms.

References

[1]
S. Barnett. A note on the Bezoutian matrix. SIAM J. Appl. Math., 22(1):84--87, 1972.
[2]
S. Barnett. Matrices in Control Theory. Robert E. Krieger, 1984. rev. ed.
[3]
D. Bini and V. Pan. Polynomial and Matrix Computations, Volume 1, Fundamental Algorithms. Birkhäuser, 1994.
[4]
J. Chen, K. H. Fan, and C. N. Nett. Structured singular values and stability analysis of uncertain polynomials, part 1: the generalized μ Systems & Control Letters, 23(1):53--65, 1994.
[5]
J. Chen, K. H. Fan, and C. N. Nett. Structured singular values and stability analysis of uncertain polynomials, part 2: a missing link. Systems & Control Letters, 23(2):97--109, 1994.
[6]
G. E. Coxson and C. L. DeMarco. Testing robust stability of general matrix polytopes is an NP-hard computation. In Proceedings of the 29th Allerton Conference, 1991.
[7]
C. J. de la Vallée-Poussin. Sur la méthode de l'approximation minimum. Soc. Scient. Bruxelles, Annales, 2 ième partie, mémoires, 35:1--16, 1911.
[8]
J. W. Demmel. The componentwise distance to the nearest singular matrix. SIAM J. Matrix Anal. Appl., 13:10--19, 1992.
[9]
J. Doyle. Analysis of feedback systems with structured uncertainty. IEE Proc. Part D, 129:242--250, 1982.
[10]
C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211--218, 1936.
[11]
F. R. Gantmacher. The Theory of Matrices. Chelsea, 1959. (Volume I and II).
[12]
G. H. Golub and C. Van Loan. Matrix Computations, 3rd ed. Johns Hopkins University, 1996.
[13]
G. Heinig and K. Rost. Algebraic Methods for Toeplitz-like Matrices and Operators. Birkhäuser, 1984.
[14]
U. Helmke and P. A. Fuhrmann. Bezoutians. Linear Algebra Appl., 122/123/124:1039--1097, 1989.
[15]
M. A. Hitz and E. Kaltofen. Efficient algorithms for computing the nearest polynomial with constrained root In Proceedings of the 1998 International Symposium on Symbolic and Algebraic Computation, ISSAC'98, pages 236--243, 1998.
[16]
M. A. Hitz, E. Kaltofen, and Lakshman Y. N. Efficient algorithms for computing the nearest polynomial with a real root and related problems. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, ISSAC'99, pages 205--212, 1999.
[17]
W. Kahan. Numerical linear algebra. Canadian Math. Bull., 9:757--801, 1966.
[18]
N. Karmarkar and Lakshman Y. N. Approximate polynomial greatest common divisors and nearest singular polynomials. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC'96, pages 35--39, 1996.
[19]
N. K. Karmarkar and Lakshman Y. N. On approximate GCDs of univariate polynomials. JSC, 26(6):653--666, 1998. Special issue on Symbolic Numeric Algebra for Polynomials S. M. Watt and H. J. Stetter, editors.
[20]
M. G. Krein and M. A. Naimark. The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations. Linear and Multilinear Algebra, 10:265--308, 1981. Originally published in Russian, Kharkov (1936).
[21]
H. Park, L. Zhang, and J. B. Rosen. Low rank approximation of a Hankel matrix by structured total least norm. BIT, 39(4):757--779, 1999.
[22]
S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Math. Control Signals Systems, 6:1--9, 1993.
[23]
S. M. Rump. Structured perturbations part I: Normwise distances. SIAM J. Matrix Anal. Appl., 25(1):1--30, 2003.
[24]
S. M. Rump. Structured perturbations part II: Componentwise distances. SIAM J. Matrix Anal. Appl., 25(1):31--56, 2003.
[25]
E. Stiefel. Über diskrete und lineare Tschebyscheff-Approximationen. Numerische Mathematik, 1(1):1--28, 1959.
[26]
O. Toker and H. Özbay. On the NP-hardness of the purely complex μ computation, analysis/synthesis, and some related problems in multidimensional systems. In Proceedings of the American Control Conference, pages 447--451, 1995.
[27]
E. E. Tyrtyshnikov. How bad are Hankel matrices? Numerische Mathematik, 67:261--269, 1994.

Cited By

View all
  • (2015)Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear MeasurementsSampling Theory in Signal and Image Processing10.1007/BF0354958614:1(17-47)Online publication date: 1-Jan-2015
  • (2012)Decentralised minimal-time dynamic consensus2012 American Control Conference (ACC)10.1109/ACC.2012.6315298(800-805)Online publication date: Jun-2012
  • (2007)ECCAD 2007 poster abstractsACM Communications in Computer Algebra10.1145/1296772.129677441:1-2(12-24)Online publication date: 1-Mar-2007

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ISSAC '05: Proceedings of the 2005 international symposium on Symbolic and algebraic computation
July 2005
388 pages
ISBN:1595930957
DOI:10.1145/1073884
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 July 2005

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hankel
  2. Toeplitz
  3. hybrid symbolic/numeric computing
  4. nearest singular matrix
  5. parametric minimization

Qualifiers

  • Article

Conference

ISSAC05
Sponsor:

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2015)Cadzow Denoising Upgraded: A New Projection Method for the Recovery of Dirac Pulses from Noisy Linear MeasurementsSampling Theory in Signal and Image Processing10.1007/BF0354958614:1(17-47)Online publication date: 1-Jan-2015
  • (2012)Decentralised minimal-time dynamic consensus2012 American Control Conference (ACC)10.1109/ACC.2012.6315298(800-805)Online publication date: Jun-2012
  • (2007)ECCAD 2007 poster abstractsACM Communications in Computer Algebra10.1145/1296772.129677441:1-2(12-24)Online publication date: 1-Mar-2007

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media